
Appendix F - Lawrenceville GSI Pilot Study

Appendix E-6 – Lawrenceville GSI Pilot Study

High-Yield Green Stormwater Infrastructure (GSI) Pilot Study Combined Wastewater Sheds A-22 through A-35

Prepared for ALCOSAN

07-25-2014 updated 7-30-2014

Landbase Systems GOALprocess + EPA SWMM 412 563-1920

	Task 1 Pilot Area Maps for Review	
•	1.1 A-22 through A-35 Pilot area with Points-of-Connection, Waste Water Pipe, known Inlets, and detailed 3D GOALprocess catchment boundaries	
2	Task 2: Runoff, Net Impervious Acres, and Gross Impervious Acres Summary of Known Inlets in POCs A-22 through A-35	4
-	2.1 Example of Gross versus Net Drainage Areas in a Developed Landscape	
	2.2 Ranking Data: Database ranking of current known inlets within wastewater sheds A-22 through A-35 along the east short of the Allegheny River	
-	2.2.1 Description of database attributes provided for each of the 2,294 known inlet locations within sheds A22 through A-35:	
	2.2.2 Ranking Data: 2a) Millions of Gallons of Net Annual Runoff by Ranked Inlet Location and POC Shed	
	2.2.3 Ranking Data: 2b) Net Acres of Impervious and Building Roof Surfaces Grouped by Ranked Inlet Location and POC Shed	
	2.2.4 Ranking Data: 2c) Gross Acres of Impervious and Building Roof Surfaces Grouped by Ranked Inlet Location and POC Shed	8
	2.2.5 Ranking Data: Millions of Gallons of Net Runoff Grouped by Ranked Inlet Location and Net Impervious Surfaces Above	9
3	Task 3 – Ranking of Sewer Sheds based upon Top Runoff and Impervious Surfaces	10
	3.1 Summary of SWMM model response to GSI/source reduction runoff volumes at high-yield sites in each Pilot shed	11
4	Task 4 – Process to Select Two Sheds for More Detailed GSI Installation Analysis, Layout, and Evaluation	12
5	Task 5: GSI Strategies on 5 Selected Sites	
	5.1 Site-Specific GSI Project Selection	
	5.2 GSI Strategies reviewed on each of the five selected sites	14
:	5.2 GSI Strategies reviewed on each of the five selected sites	14 15
	 5.2 GSI Strategies reviewed on each of the five selected sites	14 15 16
:	 5.2 GSI Strategies reviewed on each of the five selected sites 5.3 Site-specific maps, drainage areas, and Green Stormwater Infrastructure (GSI) performance simulations 5.3.1 Site 870+038: Remove GSI Strategy in Shed A-29/29z on 48th and Harrison Streets 5.3.2 Site 208+838: 'Infiltrate ONLY' GSI in Shed A-29/29z on Butler Street and Allegheny Cemetery 	 14 15 16 17
	 5.2 GSI Strategies reviewed on each of the five selected sites 5.3 Site-specific maps, drainage areas, and Green Stormwater Infrastructure (GSI) performance simulations 5.3.1 Site 870+038: Remove GSI Strategy in Shed A-29/29z on 48th and Harrison Streets 5.3.2 Site 208+838: 'Infiltrate ONLY' GSI in Shed A-29/29z on Butler Street and Allegheny Cemetery 5.3.3 Site 328+785+800: Return GSI Strategy in Shed A-29/29z on Stanton Avenue and Woodbine Street 	 14 15 16 17 18
	 5.2 GSI Strategies reviewed on each of the five selected sites 5.3 Site-specific maps, drainage areas, and Green Stormwater Infrastructure (GSI) performance simulations 5.3.1 Site 870+038: Remove GSI Strategy in Shed A-29/29z on 48th and Harrison Streets 5.3.2 Site 208+838: 'Infiltrate ONLY' GSI in Shed A-29/29z on Butler Street and Allegheny Cemetery 5.3.3 Site 328+785+800: Return GSI Strategy in Shed A-29/29z on Stanton Avenue and Woodbine Street 5.3.4 Site 033: GSI Return strategy in Shed A-34 on Bulter 55th Streets 	 14 15 16 17 18 19
	 5.2 GSI Strategies reviewed on each of the five selected sites 5.3 Site-specific maps, drainage areas, and Green Stormwater Infrastructure (GSI) performance simulations 5.3.1 Site 870+038: Remove GSI Strategy in Shed A-29/29z on 48th and Harrison Streets 5.3.2 Site 208+838: 'Infiltrate ONLY' GSI in Shed A-29/29z on Butler Street and Allegheny Cemetery 5.3.3 Site 328+785+800: Return GSI Strategy in Shed A-29/29z on Stanton Avenue and Woodbine Street 5.3.4 Site 033: GSI Return strategy in Shed A-34 on Bulter 55th Streets 5.3.5 Site 037+222: GSI Infiltration ONLY strategy in A-34 between Butler Street between 55th and 56th 	 14 15 16 17 18 19 20
	 5.2 GSI Strategies reviewed on each of the five selected sites	14 15 16 17 18 19 20 21
	 5.2 GSI Strategies reviewed on each of the five selected sites	14 15 16 17 18 19 20 21 22
	 5.2 GSI Strategies reviewed on each of the five selected sites 5.3 Site-specific maps, drainage areas, and Green Stormwater Infrastructure (GSI) performance simulations 5.3.1 Site 870+038: Remove GSI Strategy in Shed A-29/29z on 48th and Harrison Streets 5.3.2 Site 208+838: 'Infiltrate ONLY' GSI in Shed A-29/29z on Butler Street and Allegheny Cemetery 5.3.3 Site 328+785+800: Return GSI Strategy in Shed A-29/29z on Stanton Avenue and Woodbine Street 5.3.4 Site 033: GSI Return strategy in Shed A-34 on Bulter 55th Streets 5.3.5 Site 037+222: GSI Infiltration ONLY strategy in A-34 between Butler Street between 55th and 56th. 5.4 Summary of GOALprocess+SWMM Modeling Results for 5 Selected Site Installations 5.4 Suguet and Modeling of Top 10+% High-Yield Sites in Sheds A-29/29z and A-34 6.1 General Steps to establish an effective 'Remove' and 'Return' GSI design process. 	14 15 16 17 18 20 21 22 22
6	 5.2 GSI Strategies reviewed on each of the five selected sites	14 15 16 17 18 20 21 21 22 22

1 Task 1 Pilot Area Maps for Review

SCOPE: Provide a GIS shape file and accompanying PDF showing all known or assumed stormwater inlets within the pilot study area. The shape file should include the following information for each inlet:

- The sewershed the inlet is located within
- A unique ID number for each inlet

Landbase Systems provided ALCOSAN with 2,194 known inlet locations to the pilot area A-22 through A-35.

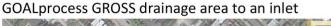
1.1 A-22 through A-35 Pilot area with Points-of-Connection, Waste Water Pipe, known Inlets, and detailed 3D GOALprocess catchment boundaries Landbase Systems delivered current known inlet locations to ALCOSAN. The image on the right has a transparent purple overlay of detailed 3D GOALprocess surface flow catchments. In the boundary of the Pilot area there are only minor outside edge differences between the underlying SWMM catchments/master sewersheds and the GOAL process 3D surface catchment boundaries.

Pilot Area, Wastewater Sheds, Point-of-Connection Names, and GOALprocess catchments (purple overlay)

2 Task 2: Runoff, Net Impervious Acres, and Gross Impervious Acres Summary of Known Inlets in POCs A-22 through A-35

SCOPE: Using the 2003 typical year precipitation data and SWMM model Green-Ampt infiltration parameters rank all known or assumed stormwater inlets and their drainage areas by:

- 2a) NET annual runoff volume, as estimated by the GOALprocess using the calibrated SWMM runoff model
- 2b) Areas of NET impervious cover tributary to the inlet (impervious = roof tops plus impervious ground surfaces)
- 2c) Areas of GROSS impervious cover tributary to the inlet


The summaries of impervious cover should include all building rooftop acres.

2.1 Example of Gross versus Net Drainage Areas in a Developed Landscape

In the developed environment, curbs, gutters, road crowns, buildings, and walls must be taken into account when defining drainage areas. These real world three-dimensional features have a dominant effect on where and how surface water runoff flows and the boundary of drainage areas. The GOALprocess accounts for these features when evaluating and defining high-yield sites.

The following drainage areas represent the range of likely drainage area (and runoff area) under various conditions (low rainfall, high rainfall, functional inlets, clogged/unmaintained inlets...)

GROSS drainage area (left image below) assumes all inlets above a focus location do NOT work. The image on the left illustrates a 'Gross Drainage Area' that assumes all inlets within the highlighted area do NOT intercept any runoff. The gross drainage area is 0.9375 acres (nearly 10 times larger than the Net drainage area). NET drainage area assumes all inlets above a focus location DO work and NO runoff flows to the focus location. The image on the right illustrates a 'Net Drainage Area' that assumes all inlets above the highlighted area DO intercept all runoff. The Net drainage area is 0.099 acres (about 1/9th of the Gross drainage area).

GOALprocess NET drainage area to an inlet

2.2 Ranking Data: Database ranking of current known inlets within wastewater sheds A-22 through A-35 along the east short of the Allegheny River

Below is a thumbnail image and summary of the database attributes provided on each of the 2,177 ranked combined network inlet locations (2,194 total included dedicated storm inlets). The document was provided on 4/3/2014 and named '140403_LBs-Task2-Gp_SurfaceFlowRanked_Inlet...xlsx'

GOALprocess Summary of Inle	et Drainage Are	as in A-22 through	n A-35															
Task 2 and Foundation for Tas	k 3 Ranking POC	Cs																
LBs20140319 updated 201403	327																	
status 💌 Pilot_ID 💌 focus_area	swmm_model	swmm_catchment_	swmm_outfall	<pre>meta_RO_rank_pilot </pre>	meta_net_imperv_rank_pilot	meta_of ALL gross_imperv meta_storr	m_sys 💌 runoff_net_MG	imperv_bldg_net_	imperv_bldg_gross	net_above	net_above_buildi	net_above_imperv •	net_above_perv	gross_above	🔹 gross_above_buildi 💌	gross_above_imperv	gross_above_perv	inlet_above
delivered_1 cdmPilot_00 cdmPilot22-35	i ua	ua_A-35	ua_A-35-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 15.373	4.81	5.61	28.65	1.91	2.89	23.84	30.83	2.25	3.36	25.22	11
delivered_1 cdmPilot_00 cdmPilot22-35	i ua	ua_A-35	ua_A-35-OF	highest 5% inlet runoff wi	t highest 10% net impervious [43.9	9% chighest 50% of ALL gross impervi combined st	torm 3.575	0.84	0.84	6.90	0.31	0.52	6.06	6.90	0.31	0.52	6.06	0
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-30	mr_A-30-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 3.356	4.07	4.13	4.24	3.16	0.90	0.17	4.31	3.17	0.96	0.19	1
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-23	mr_A-23-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 3.089	3.51	15.46	5.10	1.68	1.83	1.59	27.06	7.58	7.88	11.60	19
delivered_1 cdmPilot_00 cdmPilot22-35	i ua	ua_A-35	ua_A-35-OF	highest 5% inlet runoff wi	t highest 10% net impervious [43.9	9% chighest 15% of ALL gross impervi combined st	torm 3.115	0.69	1.69	6.09	0.37	0.31	5.40	13.38	0.68	1.01	11.69	3
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-23	mr_A-23-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 3.015	3.26	6.75	5.94	1.84	1.41	2.68	12.08	3.55	3.20	5.33	9
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-22	mr_A-22-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.29	% o highest 5% of ALL gross impervic combined st	torm 2.996	3.00	5.91	7.01	1.13	1.87	4.01	15.82	2.31	3.60	9.90	20
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-22	mr_A-22-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.971	3.64	3.78	4.07	3.41	0.23	0.43	4.51	3.43	0.36	0.73	4
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-23	mr_A-23-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.853	3.05	4.30	4.83	1.12	1.93	1.78	6.80	1.71	2.59	2.50	4
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-27	mr_A-27-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.780	3.00	3.61	5.27	1.53	1.47	2.27	6.32	1.86	1.75	2.71	5
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-23	mr_A-23-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.782	3.09	3.35	4.80	1.86	1.23	1.72	5.13	1.87	1.49	1.78	3
delivered_1 cdmPilot_00 cdmPilot22-35	i ua	ua_A-35	ua_A-35-OF	highest 5% inlet runoff wi	t highest 10% net impervious [43.9	9% chighest 10% of ALL gross impervi combined st	torm 2.628	0.76	2.67	4.95	0.31	0.45	4.19	18.77	1.06	1.61	16.10	6
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-32	mr_A-32-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.622	2.88	3.05	4.61	1.47	1.41	1.73	4.83	1.49	1.56	1.78	4
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-22	mr_A-22-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 10% of ALL gross impervi combined st	torm 2.538	2.65	2.65	5.03	1.04	1.61	2.38	5.03	1.04	1.61	2.38	0
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-29	mr_A-29-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 10% of ALL gross impervi combined st	torm 2.394	2.11	2.11	8.24	0.69	1.43	6.13	8.24	0.69	1.43	6.13	0
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-22	mr_A-22-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.380	2.56	4.54	4.09	0.99	1.57	1.53	11.08	1.81	2.73	6.54	9
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-28	mr_A-28-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.286	2.50	3.81	4.02	1.25	1.25	1.52	6.01	1.93	1.87	2.21	11
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-28	mr_A-28-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.274	2.57	7.88	3.11	1.15	1.42	0.54	10.47	3.86	4.02	2.59	22
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-23	mr_A-23-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.170	2.35	8.90	3.83	1.14	1.21	1.48	14.56	3.80	5.10	5.65	6
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-23	mr_A-23-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.171	2.45	5.36	2.93	1.18	1.27	0.47	6.32	2.00	3.35	0.96	10
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-23	mr_A-23-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.122	2.25	6.55	3.92	0.96	1.30	1.67	10.73	2.66	3.89	4.17	5
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-22	mr_A-22-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 5% of ALL gross impervic combined st	torm 2.075	2.55	3.24	2.92	2.32	0.23	0.37	4.06	2.85	0.40	0.82	2
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-29	mr_A-29Z-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.29	% o highest 10% of ALL gross impervi combined st	torm 1.922	2.00	2.66	3.76	0.48	1.52	1.76	6.04	0.74	1.92	3.39	3
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-28	mr_A-28-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.29	% o highest 10% of ALL gross impervi combined st	torm 1.955	2.20	2.34	3.00	1.17	1.03	0.80	3.18	1.17	1.17	0.84	1
delivered_1 cdmPilot_00 cdmPilot22-35	i mr	mr_A-22	mr_A-22-OF	highest 5% inlet runoff wi	t highest 5% net impervious [29.25	% o highest 15% of ALL gross impervi combined st	torm 1.813	1.68	1.68	6.07	0.76	0.92	4.39	6.07	0.76	0.92	4.39	0

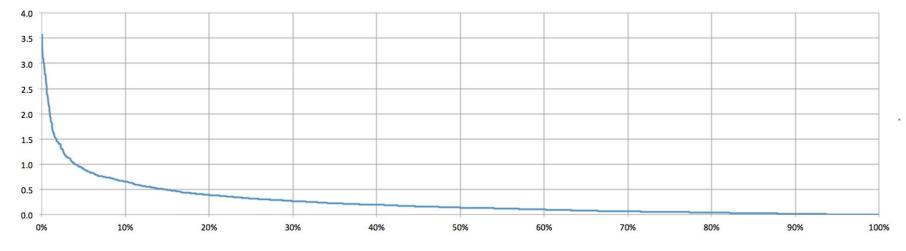
2.2.1 Description of database attributes provided for each of the 2,294 known inlet locations within sheds A22 through A-35:

GOALprocess Inlet Metadata Attribute	Description of contained values	Data Source	Sections 2.2.2 through 22.5 on the following pages contain cross-tabulated tables and charts
status	delivery date to CDM	management	Sections 2.2.2 through 22.3 on the following pages contain cross-tabulated tables and charts
Pilot_ID	unique feature identifiaction value	management	importions across gross importions listed in this database
focus_area	project reference name	management	impervious acres, gross impervious listed in this database.
	EPA SWMM model region (mr = MainRivers or	swmm model and	
swmm_model	ua = UpperAllegheny)	wastewater network	
summer established as	CIA/AAA model point of connection name	swmm model and	
swmm_catchment_poc	SWMM model point-of-connection name	wastewater network	
swmm catchment outfall	SWMM model outfall structure name	swmm model and	
swinin_catchinent_outlai	Swivivi model outlail structure name	wastewater network	
meta_RO_rank_pilot	cateogy summarizing ranking of 2003 typical year SWMM	GOALprocess 3D	
meta_no_rank_phot	model runoff to each inlet	surface flow network	
meta_net_imperv_rank_pilot	cateogy summarizing ranking of impervious surface and	GOALprocess 3D	
meta_net_imperv_tank_phot	building rooftop in NET drainage area of each inlet	surface flow network	
meta of ALL gross imperv rank pilot	cateogy summarizing ranking of impervious surface and	GOALprocess 3D	
meta_or Att Bross_imperv_runk_prot	building rooftop in GROSS drainage area of each inlet	surface flow network	
meta storm system	type of stormwater network to which inlet appears to be	GOALprocess 3D	
ineta_storm_system	connected (combined storm, dedicated storm)	surface flow network	
runoff net MG swmm	millions of gallons of 2003 typical year runoff that appears	GOALprocess 3D	
	to flow off the NET drainage area to the inlet location	surface flow network	
imperv_bldg_net_AC_above	acres of impervious surface and building rooftop witin the	GOALprocess 3D	
	NET drainage area of each inlet	surface flow network	
imperv bldg gross AC above	acres of impervious surface and building rooftop witin the	GOALprocess 3D	
	GROSS drainage area of each inlet	surface flow network	
net_above	total acres of NET drainage area of each inlet	GOALprocess 3D	
	.	surface flow network	
net above buildings	acres of building rooftop in the NET drainage area of	GOALprocess 3D	
0	each inlet	surface flow network	
net_above_impervious	acres of impervious surface in the NET drainage area of	GOALprocess 3D	
	each inlet	surface flow network	
net_above_pervious	acres of pervious surface in the NET drainage area of	GOALprocess 3D	
	each inlet	surface flow network	
gross_above	total acres of GROSS drainage area of each inlet	GOALprocess 3D	
	and of huilding mother in the CDOCC desires and of	surface flow network	
gross_above_buildings	acres of building rooftop in the GROSS drainage area of	GOALprocess 3D	
	each inlet acres of impervious surface in the GROSS drainage area of	surface flow network GOALprocess 3D	
gross_above_impervious	each inlet	surface flow network	
	acres of pervious surface in the GROSS drainage area of	GOALprocess 3D	
gross_above_pervious	each inlet	surface flow network	
	total nnumber of known inlets within the GROSS drainage	GOALprocess 3D	
inlet_above_count	area above of each inlet	surface flow network	
	area above of each met	Surface now network	

rts ranking high-yield to low-yield of runoff, net

2.2.2 Ranking Data: 2a) Millions of Gallons of Net Annual Runoff by Ranked Inlet Location and POC Shed

Millions of Gallons of Net Runoff Grouped by Highest Ranked Inlets and Points of Connection


	highest 0-5% inlet runoff within	highest 5-10% inlet runoff within	highest 10-15% inlet runoff within	highest 15-20% inlet runoff within	highest 20-50% inlet runoff within	lowest 50% inlet runoff within	
POC	pilot area [30.1% of ALL inlet RO]	pilot area [44.1% of ALL inlet RO]	pilot area [54.5% of ALL inlet RO]	pilot area [62.5% of ALL inlet RO]	pilot area [89.1% of ALL inlet RO]	pilot area [10.9% of ALL inlet RO]	TOTAL
mr_A-22	58.107	39.074	32.524	20.238	85.713	38.368	274.024
mr_A-23	35.165	13.659	4.540	5.368	10.963	5.239	74.934
mr_A-25	3.408		2.355	0.799	1.791	0.440	8.793
mr_A-26	2.321	2.327	1.723	1.826	1.718	0.190	10.105
mr_A-27	3.714	1.421	3.304	1.251	2.882	1.184	13.756
mr_A-28	11.902	5.305	4.716	5.173	9.490	3.346	39.931
mr_A-29	14.487	8.882	8.118	8.366	30.193	10.450	80.496
mr_A-30	3.336	1.734			0.497	0.150	5.716
mr_A-31	1.055				0.257	0.291	1.603
mr_A-32	13.029	2.926	2.304	1.823	6.283	2.706	29.071
mr_A-33	2.480	3.056	0.556	0.431	3.114	1.077	10.715
mr_A-34	3.112	2.413	0.658	0.473	0.475	0.484	7.613
ua_A-35	27.947	2.963	1.732	2.166	5.945	1.267	42.021
TOTAL	180.062	83.760	62.530	47.913	159.321	65.192	598.778

Number of Inlets in each Grouping

Number of Ir	nlets in each Grouping						
	highest 0-5% inlet runoff within	highest 5-10% inlet runoff within	highest 10-15% inlet runoff within	highest 15-20% inlet runoff within	highest 20-50% inlet runoff within	lowest 50% inlet runoff within	
POC	pilot area [30.1% of ALL inlet RO]	pilot area [44.1% of ALL inlet RO]	pilot area [54.5% of ALL inlet RO]	pilot area [62.5% of ALL inlet RO]	pilot area [89.1% of ALL inlet RO]	pilot area [10.9% of ALL inlet RO]	TOTAL
mr_A-22	41	51	58	46	361	639	1,196
mr_A-23	22	18	8	12	44	94	198
mr_A-25	3		4	2	7	9	25
mr_A-26	2	3	3	4	7	4	23
mr_A-27	2	2	6	3	12	19	44
mr_A-28	7	7	8	12	37	56	127
mr_A-29	10	12	14	19	124	168	347
mr_A-30	1	2			2	4	9
mr_A-31	1				1	7	9
mr_A-32	10	4	4	4	24	49	95
mr_A-33	2	4	1	1	11	21	40
mr_A-34	2	3	1	1	2	7	16
ua_A-35	6	4	3	5	26	21	65
TOTAL	109	110	110	109	658	1,098	2,194

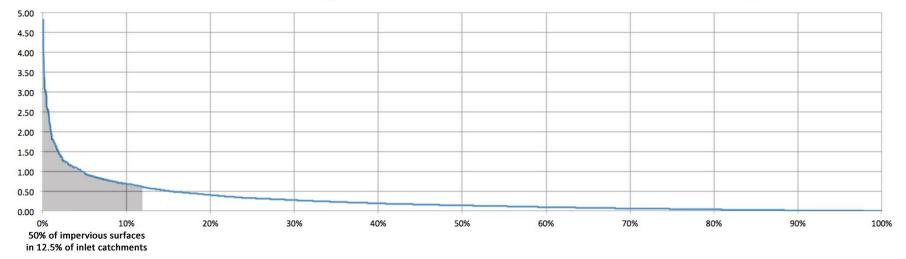
Distribution of Millions of Gallons of flow to Inlets Sorted by Ranked Inlets

Millions of Gallons of Annual Runoff to Known Inlets within POCs A-22 thought A-35

The top 12.6% highest net runoff ranked inlet locations appear to receive 50% of runoff tributary to known inlets in sheds A-22 through A-35.

2.2.3 Ranking Data: 2b) Net Acres of Impervious and Building Roof Surfaces Grouped by Ranked Inlet Location and POC Shed

Net Acres of Impervious Surfaces Grouped by Highest Ranked Inlets and Points of Connection


	•						
	highest 0-5% net impervious	highest 5-10% net impervious	highest 10-15% net impervious	highest 15-20% net impervious	highest 20-50% net impervious	lowest 50% net impervious	
POC	[29.2% of ALL imperv 28.8% of inlet RO]	[43.9% of ALL imperv 43.7% of inlet RO]	[54.8% of ALL imperv 54% of inlet RO]	[63.1 of ALL imperv 62.0% of inlet RO]	[89.7% of ALL imperv 88.8% of inlet RO]	[10.3% of of ALL imperv 11.2% of inlet RO]	TOTAL
mr_A-22	64.46	42.02	30.94	24.78	84.04	35.27	281.52
mr_A-23	39.51	14.68	6.27	5.42	10.52	4.92	81.33
mr_A-25	3.79	0.76	1.89	0.84	1.91	0.45	9.66
mr_A-26	2.31	2.48	2.36	0.47	2.47	0.17	10.27
mr_A-27	4.04	1.58	4.08	0.88	3.43	0.99	15.00
mr_A-28	13.22	7.41	4.96	5.63	10.18	2.96	44.36
mr_A-29	11.72	7.03	8.74	8.04	29.77	10.21	75.50
mr_A-30	6.06				0.37	0.30	6.73
mr_A-31	1.14				0.27	0.29	1.71
mr_A-32	14.45	3.95	2.44	1.83	5.85	2.81	31.32
mr_A-33	3.38	1.49	1.19	0.42	3.00	0.95	10.42
mr_A-34	3.71	2.46	1.18		0.50	0.43	8.28
ua_A-35	5.99	3.82	0.59	0.87	5.95	1.60	18.81
TOTAL	173.79	87.68	64.64	49.20	158.26	61.34	594.91

Number of Inlets in each Grouping

	highest 0-5% net impervious	highest 5-10% net impervious	highest 10-15% net impervious	highest 15-20% net impervious	highest 20-50% net impervious	lowest 50% net impervious	
POC	[29.2% of ALL imperv 28.8% of inlet RO]	[43.9% of ALL imperv 43.7% of inlet RO]	[54.8% of ALL imperv 54% of inlet RO]	[63.1 of ALL imperv 62.0% of inlet RO]	[89.7% of ALL imperv 88.8% of inlet RO]	[10.3% of of ALL imperv 11.2% of inlet RO]	TOTAL
mr_A-22	43	53	54	55	360	631	1,196
mr_A-23	23	18	11	12	44	90	198
mr_A-25	3	1	3	2	7	9	25
mr_A-26	2	3	4	1	9	4	23
mr_A-27	2	2	7	2	14	17	44
mr_A-28	7	9	8	12	39	52	127
mr_A-29	8	9	14	18	122	176	347
mr_A-30	3				1	5	9
mr_A-31	1				1	7	9
mr_A-32	10	5	4	4	22	50	95
mr_A-33	3	2	2	1	11	21	40
mr_A-34	2	3	2		2	7	16
ua_A-35	2	5	1	2	26	29	65
TOTAL	109	110	110	109	658	1,098	2,194

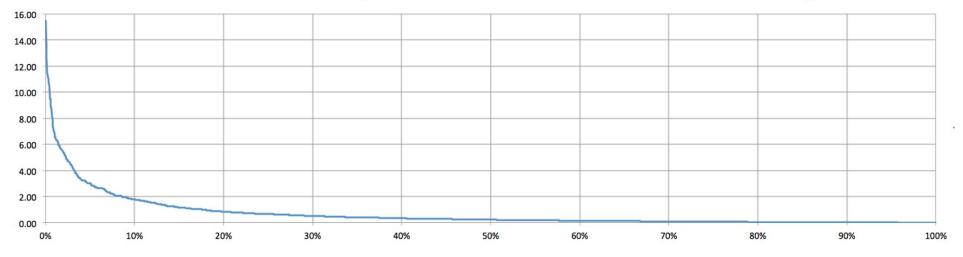
Distribution of Net Impervious Surfaces Sorted by Ranked Inlet

Acres of Net Impervious and Building Area Above Known Inlets within POCs A-22 thought A-35

The top 12.5% highest 'net impervious' ranked inlet catchments contain 50% of tributary impervious acres in sheds A-22 through A-35.

2.2.4 Ranking Data: 2c) Gross Acres of Impervious and Building Roof Surfaces Grouped by Ranked Inlet Location and POC Shed

Gross Acres of Impervious Surfaces Grouped by Highest Ranked Inlets and Points of Connection


POC	highest 0-5% gross impervious	highest 5-10% gross impervious	highest 10-15% gross impervious	highest 15-20% gross impervious	highest 20-50% gross impervious	lowest 50% gross impervious	TOTAL
mr_A-22	146.07	105.92	87.13	55.58	169.74	54.75	619.20
mr_A-23	149.31	31.52	10.10	14.40	23.49	8.30	237.12
mr_A-25	19.09	2.71	2.73	3.11	3.49	0.64	31.77
mr_A-26	7.41	4.14	4.39	4.37	2.84	0.33	23.48
mr_A-27	31.18	8.92	4.33	2.00	6.78	1.22	54.42
mr_A-28	63.08	21.53	15.56	5.87	19.13	4.55	129.72
mr_A-29	72.48	39.13	22.22	14.10	47.14	17.44	212.51
mr_A-30	4.13		1.44	2.07	0.43	0.28	8.34
mr_A-31			1.42		0.27	0.38	2.07
mr_A-32	72.67	14.60	9.47	1.89	12.02	3.45	114.10
mr_A-33	11.13	10.47		3.19	3.32	1.40	29.50
mr_A-34	8.95	5.00		1.04	2.19	0.42	17.61
ua_A-35	12.15	7.53	2.95	1.96	9.68	3.28	37.55
TOTAL	597.64	251.46	161.75	109.59	300.52	96.44	1517.39

Number of Inlets in each Grouping

POC	highest 0-5% gross impervious	highest 5-10% gross impervious	highest 10-15% gross impervious	highest 15-20% gross impervious	highest 20-50% gross impervious	lowest 50% gross impervious	TOTAL
mr_A-22	32	46	60	56	376	626	1,196
mr_A-23	18	14	7	14	46	99	198
mr_A-25	3	1	2	3	8	8	25
mr_A-26	2	2	3	4	7	5	23
mr_A-27	5	4	3	2	15	15	44
mr_A-28	10	9	10	6	42	50	127
mr_A-29	18	18	15	14	101	181	347
mr_A-30	1		1	2	1	4	9
mr_A-31			1		1	7	9
mr_A-32	13	6	6	2	26	42	95
mr_A-33	3	5		3	8	21	40
mr_A-34	2	2		1	5	6	16
ua_A-35	2	3	2	2	22	34	65
TOTAL	109	110	110	109	658	1,098	2,194

Distribution of Gross Impervious Surfaces Sorted by Ranked Inlets

Acres of Gross Impervious and Building Area Above Known Inlets within POCs A-22 thought A-35

2.2.5 Ranking Data: Millions of Gallons of Net Runoff Grouped by Ranked Inlet Location and Net Impervious Surfaces Above

Millions of Gallons of Net Runoff Grouped by Highest Ranked Inlets and Net Impervious Surfaces Above

GOALprocess Summary of Inlet Drainage Areas in A-22 through	h A-35						
Summary of Runoff AND Net Acres of Impervious Areas Above Highest Rai							
LBs20140319 updated 20140327							
Millions of Gallons of Net Runoff Grouped by Highest Ranked Inlets AND	Highest Grouping of Net Acres of Ir	npervious Surfaces and Buildings A	bove				
	highest 0-5% inlet runoff within	highest 5-10% inlet runoff within	highest 10-15% inlet runoff within	highest 15-20% inlet runoff within	highest 20-50% inlet runoff within	lowest 50% inlet runoff within	
Net Acres Above Ranking	•	•	•	•	pilot area [89.1% of ALL inlet RO]		тот
highest 5% net imperv inlets [29.2% of ALL imperv 28.8% of inlet RO]	166.372	6.155			,,	,,	172.5
highest 10% net imperv inlets [43.9% of ALL imperv 43.7% of inlet RO]	12.629	63.644	12.670				88.94
highest 15% net imperv inlets [54.8% of ALL imperv 54% of inlet RO]		10.143	41.560	9.932			61.63
highest 20% net imperv inlets [63.1 of ALL imperv 62.0% of inlet RO]		3.078	4.912	31.128	9.007		48.12
highest 50% net imperv inlets [89.7% of ALL imperv 88.8% of inlet RO]		0.740	3.388	6.853	143.912	5.332	160.2
lowest 50% net imperv inlets [10.3% of ALL imperv 11.2% of inlet RO]	1.062				6.401	59.860	67.32
TOTAL	180.062	83.760	62.530	47.913	159.321	65.192	598.7
Number of Inlets in each Grouping							
	highest 0-5% inlet runoff within	highest 5-10% inlet runoff within	highest 10-15% inlet runoff within	highest 15-20% inlet runoff within	highest 20-50% inlet runoff within	lowest 50% inlet runoff within	
Net Acres Above Ranking	pilot area [30.1% of ALL inlet RO]	pilot area [44.1% of ALL inlet RO]	pilot area [54.5% of ALL inlet RO]	pilot area [62.5% of ALL inlet RO]	pilot area [89.1% of ALL inlet RO]	pilot area [10.9% of ALL inlet RO]	TOTA
highest 5% net imperv inlets [29.2% of ALL imperv 28.8% of inlet RO]	102	7					109
highest 10% net imperv inlets [43.9% of ALL imperv 43.7% of inlet RO]	6	84	20				110
highest 15% net imperv inlets [54.8% of ALL imperv 54% of inlet RO]		14	75	21			110
highest 20% net imperv inlets [63.1 of ALL imperv 62.0% of inlet RO]		4	9	72	24		109
highest 50% net imperv inlets [89.7% of ALL imperv 88.8% of inlet RO]		1	6	16	596	39	658
lowest 50% net imperv inlets [10.3% of ALL imperv 11.2% of inlet RO]	1				38	1,059	1,098
TOTAL	109	110	110	109	658	1,098	2,19

Locations categorized in the upper left 3 x 3 highest ranked quarter of the above tables have the greatest potential to intercept the most runoff per GSI or source reduction installation dollar. The sheds that contain those higher ranked locations are summarized in the table below:

	Number	Total	Total	Average	Avg	Total	Total	Average	Avg
	of	Annual Runoff	Runoff	Annual Runoff	Runoff	Impervious	Impervious	Impervious	Impervious
POC Shed	Locations	Million Gallons	Rank	Million Gallons	Rank	Net Acres	Rank	Net Acres	Rank
mr_A-22-OF	142	124.910	1	0.880	10	133.25	1	0.94	8
mr_A-23-OF	47	52.522	2	1.117	3	57.81	2	1.23	3
mr_A-25-OF	7	5.763	12	0.823	14	6.45	10	0.92	9
mr_A-26-OF	7	5.848	11	0.835	13	6.08	11	0.87	13
mr_A-27-OF	10	8.439	8	0.844	12	9.20	8	0.92	10
mr_A-28-OF	22	21.922	4	0.996	7	24.54	3	1.12	7
mr_A-29-OF	11	10.111	7	0.919	9	10.01	7	0.91	11
mr_A-29Z-OF	19	17.613	6	0.927	8	16.94	5	0.89	12
mr_A-30-OF	3	5.069	13	1.690	2	6.06	12	2.02	1
mr_A-31-OF	1	1.055	14	1.055	4	1.14	14	1.14	4
mr_A-32-OF	18	18.259	5	1.014	6	20.28	4	1.13	6
mr_A-33-OF	7	6.093	10	0.870	11	6.05	13	0.86	14
mr_A-34-OF	6	6.182	9	1.030	5	6.84	9	1.14	5
ua_A-35-OF	8	29.388	3	3.674	1	10.39	6	1.30	2
	308	313.173		1.017		315.04		1.02	

3 Task 3 – Ranking of Sewer Sheds based upon Top Runoff and Impervious Surfaces

SCOPE: Rank each sewershed based on each of the following metrics:

- 3a) Potential runoff volume intercepted by top 5%, 10%, and 20% ranked ROW installations based on the GOALprocess annual runoff volume ranking (2a)
- 3b) Potential net impervious area controlled by top 5%, 10%, and 20% of ranked ROW installations based on the GOAL process net impervious cover ranking (2b)

The tables below summarize and rank the potential for high-yield GSI runoff capture within each shed. The following runoff and net impervious summaries rank each sewer shed based on runoff in million gallons and net acres of impervious surface at top high-yield sites (no summary of wastewater network overflow response):

	highest 5% inlet runoff within		Avg	Avg		highest 10% inlet runoff within	Total	Avg	Avg		highest 20% inlet runoff within		Avg	Avg
POC	pilot area [30.1% of ALL inlet RO] Rank	-	Rank	POC	pilot area [44.1% of ALL inlet RO]	Rank	MG	Rank	POC	pilot area [62.5% of ALL inlet RO]	Rank	MG	Rank
mr_A-22	58.107	1	1.42	8	mr_A-22	97.181	1	1.06	10	mr_A-22	149.943	1	0.77	10
mr_A-23	35.165	2	1.60	5	mr_A-23	48.824	2	1.22	5	mr_A-23	58.732	2	0.98	6
mr_A-25	3.408	8	1.14	12	mr_A-25	3.408	12	1.14	7	mr_A-25	5.938	10	0.66	12
mr_A-26	2.321	12	1.16	11	mr_A-26	4.648	11	0.93	12	mr_A-26	14.593	8	1.22	4
mr_A-27		7	1.86	3	mr_A-27	5.135	9	1.28	3	mr_A-27	11.102	7	0.85	8
mr_A-28		6	1.70	4		17.206	5	1.23	4	mr_A-28	24.683	5	0.73	11
mr_A-29	14.487	4	1.45	7	mr_A-29	23.369	4	1.06	9	mr_A-29	35.039	3	0.64	13
mr_A-30		9	3.34	2	mr_A-30	5.069	10	1.69	2	mr_A-30	6.792	12	2.26	1
mr_A-31	1.055	13	1.05	13	mr_A-31	1.055	13	1.05	11	mr_A-31	1.712	13	1.71	3
mr_A-32		5	1.30	9	mr_A-32	15.955	6	1.14	6	mr_A-32	18.334	6	0.83	9
mr_A-32	2.480	11	1.24	10	mr_A-32	5.537	7	0.92	13	mr_A-32	8.322	11	1.04	5
mr_A-34	3.112	10	1.56	6	mr_A-34	5.525	8	1.10	8	mr_A-34	5.997	9	0.86	7
_	27.947	3	4.66	1		30.911	3	3.09	0 1		33.077	4	1.84	2
ua_A-35 TOTAL	180.062	3	1.65	1	ua_A-35 TOTAL	263.822	3	1.20	1	ua_A-35 TOTAL	374.265	4	0.85	2
											· · ·		1	
OC Shed:	s Ranked by Acres of NET Tributary I	mpervi	ous and	Building	IS									
OC Shed					S	highest 10% net impervious	Total	Avg	Avg		highest 20% net impervious	Total	Avg	Ave
	highest 5% net impervious	Total	ous and Avg Net AC	Building Avg Rank		highest 10% net impervious [43.9% of ALL imperv 43.7% of inlet RO]	Total Rank	Avg Net AC	Avg Rank	POC	highest 20% net impervious [63.1 of ALL imperv 62.0% of inlet RO	Total) Rank	Avg Net AC	Avg
POC		Total	Avg	Avg		highest 10% net impervious [43.9% of ALL imperv 43.7% of inlet RO] 106.49		Avg Net AC		POC mr_A-22	highest 20% net impervious [63.1 of ALL imperv 62.0% of inlet RO 162.22		Avg Net AC 0.79	-
POC mr_A-22	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO]	Total Rank	Avg Net AC	Avg Rank	POC	(43.9% of ALL imperv 43.7% of inlet RO	Rank	Net AC	Rank		[63.1 of ALL imperv 62.0% of inlet RO] Rank	Net AC	Ran 11
POC mr_A-22 mr_A-23	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO] I 64.46	Total Rank 1	Avg Net AC 1.50	Avg Rank 7	POC mr_A-22	(43.9% of ALL imperv 43.7% of inlet RO) 106.49	Rank	Net AC 1.11	Rank 10	mr_A-22	[63.1 of ALL imperv 62.0% of inlet RO 162.22) Rank 1	Net AC 0.79	Ran
POC mr_A-22 mr_A-23 mr_A-25	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO] I 64.46 39.51	Total Rank 1 2	Avg Net AC 1.50 1.72	Avg Rank 7 6	POC mr_A-22 mr_A-23	(43.9% of ALL imperv 43.7% of inlet RO) 106.49 54.19	Rank	Net AC 1.11 1.32	Rank 10 4	mr_A-22 mr_A-23	[63.1 of ALL imperv 62.0% of inlet RO 162.22 65.88	0] Rank 1 2	Net AC 0.79 1.03	Ran 11 5
POC mr_A-22 mr_A-23 mr_A-25 mr_A-26	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO] I 64.46 39.51 3.79	Total Rank 1 2 9	Avg Net AC 1.50 1.72 1.26	Avg Rank 7 6 10	POC mr_A-22 mr_A-23 mr_A-25	(43.9% of ALL imperv 43.7% of inlet RO) 106.49 54.19 3.79	Rank 1 2 13	Net AC 1.11 1.32 1.14	Rank 10 4 9	mr_A-22 mr_A-23 mr_A-25	[63.1 of ALL imperv 62.0% of inlet RO 162.22 65.88 3.79	 P] Rank 1 2 13 	Net AC 0.79 1.03 0.81	Ran 11 5 9
POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO] 64.46 39.51 3.79 2.31	Total Rank 1 2 9 12	Avg Net AC 1.50 1.72 1.26 1.16	Avg Rank 7 6 10 11	POC mr_A-22 mr_A-23 mr_A-25 mr_A-26	(43.9% of ALL imperv 43.7% of inlet RO) 106.49 54.19 3.79 4.77	Rank 1 2 13 11	Net AC 1.11 1.32 1.14 0.96	Rank 10 4 9 13	mr_A-22 mr_A-23 mr_A-25 mr_A-26	[63.1 of ALL imperv 62.0% of inlet RO 162.22 65.88 3.79 5.95	Rank 1 2 13 11	Net AC 0.79 1.03 0.81 0.76	Ran 11 5 9 12 8
POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO] 64.46 39.51 3.79 2.31 4.04	Total Rank 1 2 9 12 8	Avg Net AC 1.50 1.72 1.26 1.16 2.02	Avg Rank 7 6 10 11 2	POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27	(43.9% of ALL imperv 43.7% of inlet RO) 106.49 54.19 3.79 4.77 4.04	Rank 1 2 13 13 11 12	Net AC 1.11 1.32 1.14 0.96 1.41	Rank 10 4 9 13 2	mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27	[63.1 of ALL imperv 62.0% of inlet RO 162.22 65.88 3.79 5.95 4.04	Rank 1 2 13 11 12	Net AC 0.79 1.03 0.81 0.76 0.81	Rar 11 5 9 12 8 7
POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-29	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO] 64.46 39.51 3.79 2.31 4.04 13.22	Total Rank 1 2 9 12 8 4	Avg Net AC 1.50 1.72 1.26 1.16 2.02 1.89	Avg Rank 7 6 10 11 2 4	POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28	(43.9% of ALL imperv 43.7% of inlet RO) 106.49 54.19 3.79 4.77 4.04 15.71	Rank 1 2 13 11 12 3	Net AC 1.11 1.32 1.14 0.96 1.41 1.29	Rank 10 4 9 13 2 5	mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28	[63.1 of ALL imperv 62.0% of inlet RO 162.22 65.88 3.79 5.95 4.04 18.54	 Rank 1 2 13 11 12 5 	Net AC 0.79 1.03 0.81 0.76 0.81 0.81	Rar 11 5 9 12 8 7 13
POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-29 mr_A-30	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO] 64.46 39.51 3.79 2.31 4.04 13.22 11.72	Total Rank 1 2 9 12 8 4 5	Avg Net AC 1.50 1.72 1.26 1.16 2.02 1.89 1.46	Avg Rank 7 6 10 11 2 4 8	POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-29	(43.9% of ALL imperv 43.7% of inlet RO) 106.49 54.19 3.79 4.77 4.04 15.71 13.30	Rank 1 2 13 12 3 6	Net AC 1.11 1.32 1.14 0.96 1.41 1.29 1.10	Rank 10 4 9 13 2 5 11	mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-29	[63.1 of ALL imperv 62.0% of inlet RO 162.22 65.88 3.79 5.95 4.04 18.54 18.26	Rank 1 2 13 11 12 5 6	Net AC 0.79 1.03 0.81 0.76 0.81 0.87 0.73	Rar 11 5 9 12 8 7 13 13
POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-29 mr_A-30 mr_A-31	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO] 64.46 39.51 3.79 2.31 4.04 13.22 11.72 6.06	Total Rank 1 2 9 12 8 4 5 5 6	Avg Net AC 1.50 1.72 1.26 1.16 2.02 1.89 1.46 2.02	Avg Rank 7 6 10 11 2 4 8 3	POC I mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-29 mr_A-30	(43.9% of ALL imperv 43.7% of inlet RO) 106.49 54.19 3.79 4.77 4.04 15.71 13.30 13.47	Rank 1 2 13 12 3 6 5	Net AC 1.11 1.32 1.14 0.96 1.41 1.29 1.10 2.02	Rank 10 4 9 13 2 5 11 1	mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-29 mr_A-30	[63.1 of ALL imperv 62.0% of inlet RO 162.22 65.88 3.79 5.95 4.04 18.54 18.26 24.05	Rank 1 2 13 11 12 5 6 4	Net AC 0.79 1.03 0.81 0.76 0.81 0.87 0.73 2.02	Ran 11 5 9 11 8 7 13 14 2
POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-29 mr_A-30 mr_A-31 mr_A-32	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO] 64.46 39.51 3.79 2.31 4.04 13.22 11.72 6.06 1.14	Total Rank 1 2 9 12 8 4 5 6 13	Avg Net AC 1.50 1.72 1.26 1.16 2.02 1.89 1.46 2.02 1.14	Avg Rank 7 6 10 11 2 4 8 3 12	POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-28 mr_A-29 mr_A-30 mr_A-31	(43.9% of ALL imperv 43.7% of inlet RO) 106.49 54.19 3.79 4.77 4.04 15.71 13.30 13.47 4.96	Rank 1 2 13 11 12 3 6 5 9	Net AC 1.11 1.32 1.14 0.96 1.41 1.29 1.10 2.02 1.14	Rank 10 4 9 13 2 5 11 1 8	mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-29 mr_A-30 mr_A-31	[63.1 of ALL imperv 62.0% of inlet RO 162.22 65.88 3.79 5.95 4.04 18.54 18.26 24.05 6.42	Rank 1 2 13 11 12 5 6 4 10	Net AC 0.79 1.03 0.81 0.76 0.81 0.87 0.73 2.02 1.14	Rar 111 5 9 122 8 7 13 13 1 2 2 6
POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-29 mr_A-30 mr_A-31 mr_A-32 mr_A-33	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO] 64.46 39.51 3.79 2.31 4.04 13.22 11.72 6.06 1.14 14.45	Total Rank 1 2 9 12 8 4 5 6 13 3	Avg Net AC 1.50 1.72 1.26 1.16 2.02 1.89 1.46 2.02 1.14 1.45	Avg Rank 7 6 10 11 2 4 8 3 12 9	POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-26 mr_A-27 mr_A-28 mr_A-29 mr_A-30 mr_A-31 mr_A-32	(43.9% of ALL imperv 43.7% of inlet RO) 106.49 54.19 3.79 4.77 4.04 15.71 13.30 13.47 4.96 15.22	Rank 1 2 13 11 12 3 6 5 9 4	Net AC 1.11 1.32 1.14 0.96 1.41 1.29 1.10 2.02 1.14 1.23	Rank 10 4 9 13 2 5 11 1 8 7	mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-27 mr_A-28 mr_A-29 mr_A-30 mr_A-31 mr_A-32	[63.1 of ALL imperv 62.0% of inlet RO 162.22 65.88 3.79 5.95 4.04 18.54 18.26 24.05 6.42 17.95	Rank 1 2 13 11 12 5 6 4 10 7	Net AC 0.79 1.03 0.81 0.76 0.81 0.87 0.73 2.02 1.14 0.99	Ran 11 5 9 12
	highest 5% net impervious [29.2% of ALL imperv 28.8% of inlet RO] 64.46 39.51 3.79 2.31 4.04 13.22 11.72 6.06 1.14 14.45 3.38	Total Rank 1 2 9 12 8 4 5 6 13 3 11	Avg Net AC 1.50 1.72 1.26 1.16 2.02 1.89 1.46 2.02 1.14 1.45 1.13	Avg Rank 7 6 10 11 2 4 8 3 12 9 13	POC mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-28 mr_A-29 mr_A-30 mr_A-31 mr_A-32 mr_A-33	(43.9% of ALL imperv 43.7% of inlet RO) 106.49 54.19 3.79 4.77 4.04 15.71 13.30 13.47 4.96 15.22 4.86	Rank 1 2 13 11 12 3 6 5 9 4 10	Net AC 1.11 1.32 1.14 0.96 1.41 1.29 1.10 2.02 1.14 1.23 0.97	Rank 10 4 9 13 2 5 11 1 8 7 12	mr_A-22 mr_A-23 mr_A-25 mr_A-26 mr_A-27 mr_A-27 mr_A-28 mr_A-29 mr_A-30 mr_A-31 mr_A-32 mr_A-33	[63.1 of ALL imperv 62.0% of inlet RO 162.22 65.88 3.79 5.95 4.04 18.54 18.26 24.05 6.42 17.95 6.47	Rank 1 2 13 11 12 5 6 4 10 7 9	Net AC 0.79 1.03 0.81 0.76 0.81 0.87 0.73 2.02 1.14 0.99 0.81	Ran 11 5 9 12 8 7 13 13 1 2 6 0 10

	a Bankad by Acros of NET Tributany	Imnor										
PUC Shec	is Ranked by Acres of NET Tributary	imper	vious and	a buildings								
	highest 5% net impervious	Total	Avg	Avg		highest 10% net impervious	Total	Avg	Avg		highest 20% net impervious	Tot
POC	[29.2% of ALL imperv 28.8% of inlet RO]	Rank	Net AC	Rank	POC	[43.9% of ALL imperv 43.7% of inlet RO]	Rank	Net AC	Rank	POC	[63.1 of ALL imperv 62.0% of inlet RO]	Ran
mr_A-22	64.46	1	1.50	7	mr_A-22	106.49	1	1.11	10	mr_A-22	162.22	1
mr_A-23	39.51	2	1.72	6	mr_A-23	54.19	2	1.32	4	mr_A-23	65.88	2
mr_A-25	3.79	9	1.26	10	mr_A-25	3.79	13	1.14	9	mr_A-25	3.79	13
mr_A-26	2.31	12	1.16	11	mr_A-26	4.77	11	0.96	13	mr_A-26	5.95	11
mr_A-27	4.04	8	2.02	2	mr_A-27	4.04	12	1.41	2	mr_A-27	4.04	12
mr_A-28	13.22	4	1.89	4	mr_A-28	15.71	3	1.29	5	mr_A-28	18.54	5
mr_A-29	11.72	5	1.46	8	mr_A-29	13.30	6	1.10	11	mr_A-29	18.26	6
mr_A-30	6.06	6	2.02	3	mr_A-30	13.47	5	2.02	1	mr_A-30	24.05	4
mr_A-31	1.14	13	1.14	12	mr_A-31	4.96	9	1.14	8	mr_A-31	6.42	10
mr_A-32	14.45	3	1.45	9	mr_A-32	15.22	4	1.23	7	mr_A-32	17.95	7
mr_A-33	3.38	11	1.13	13	mr_A-33	4.86	10	0.97	12	mr_A-33	6.47	9
mr_A-34	3.71	10	1.86	5	mr_A-34	7.66	8	1.23	6	mr_A-34	11.93	8
ua_A-35	5.99	7	2.99	1	ua_A-35	13.01	7	1.40	3	ua_A-35	29.80	3
TOTAL	173.79		1.59		TOTAL	261.47		1.19		TOTAL	375.31	

All sheds contain high-yield sites with great potential to reduce runoff and localized flooding at cost effective rates per gallon. However, without evaluating the SWMM overflow response at each outfall, the above information provides important yet only part of the information necessary to make effective and affordable decisions. Landbase Systems recommends GSI evaluations based on precision use of the best available resources to account for both runoff reduction and network system response.

3.1 Summary of SWMM model response to GSI/source reduction runoff volumes at high-yield sites in each Pilot shed

Landbase Systems built the GOAL process with the knowledge that no linear process or simplistic assumptions can be used to determine how many GSI managed gallons are required to eliminate 1 gallon of combined sewer overflow. The GOAL process is designed to provide a precise, realistic, and transparent method to reliably represent runoff source reduction and/or GSI installation and scientifically evaluate this reduction in overflow events and volume using SWMM source code. The GOALprocess integrates SWMM model parameters, SWMM runoff methods, and EPA SWMM source code in order to match SWMM runoff calculations in every time unit. Precisely matching every SWMM runoff calculation in every catchment down to every time unit allows that GOAL process to directly and non-invasively interface with SWMM models. This method supports faster optimization of the most effective and affordable solutions within the GOAL process. Once the most effective conceptual and/or site-specific options are determined, verification of the changes to overflow events and volumes are estimated by running the full SWMM model(s).

Each Pilot shed, A-22 through A-35, contain high ranked runoff and net impervious surface locations that can maximize performance of source reduction strategies. However, locating high-yield and rightsizing GSI installations in any shed is only part of a complete evaluation. A complete evaluation requires the full SWMM model runs for reliable and realistic representation of changes to overflow events and volume caused by GSI or source reduction layouts and strategies. To assist the selection of two combined wastewater sheds for Tasks 5 and 6, we ran the Main Rivers SWMM model ten times. Each SWMM model run simulated removal of runoff from one shed at a time (10 of 13 sheds were run). The table below shows:

- Shed name [Outfall Shed]
- Number of high-yield GOALprocess sites used [Number of High-Yield Installation Sites]
- Million gallons of GOALprocess estimated runoff removed at installed GSI sites [Annual GSI Runoff (RO) Removed (MG)]
- SWMM Main Rivers model first downstream outfall annual million gallons of overflow reduced [Annual Overflow Reduction at Shed Outfall (MG)]
- Percent of GSI gallons as reduced overflow at the first downstream outfall [% of GSI Gallons as Reduced Overflow at Shed Outfall]
- SWMM Main Rivers model Eastern Allegheny outfalls annual million gallons of overflow reduced [Annual Overflow Reduction in Overall Model]
- Percent of GSI gallons as reduced overflow at all the Allegheny Main Rivers model outfalls [% of GSI Gallons as Reduced Overflow in Overall Model]
- Ranking of highest to lowest percent response of the Eastern Allegheny Main Rivers model outfalls [Overall Response Rank]

rocess+SWMM Sy	stem Overflow F	Response to High-	rield GSI Runoff Ren	noval within Individ	lual POC Outfall S	heds
OM Pilot A-22 to A-3	5 Results from Run	ning 10 Models with	Annual GSI removed fr	om one shed at a time		
ms 20140327						
Number of High-Yield	Annual GSI Runoff (RO) Removed (MG)	Annual Overflow Reduction at	% of GSI Gallons as Reduced Overflow	Annual Overflow Reduction in	% of GSI Gallons as Reduced Overflow	Overall Response Rank
						7
9	10.000		-87.2%			4
3	2.500	-1.529	-61.2%	-2.073	-82.9%	10
4	3.000	-2.090	-69.7%	-2.720	-90.7%	8
4	4.000	-2.313	-57.8%	-3.891	-97.3%	6
10	10.000	-9.813	-98.1%	-10.106	-101.1%	3
13	10.000	-9.775	-97.8%	-10.403	-104.0%	2
2	3.000	-1.518	-50.6%	-2.698	-89.9%	9
model not run	0.000					
11	10.000	-7.272	-72.7%	-9.768	-97.7%	5
model not run	0.000					
3	3.000	-2.425	-80.8%	-3.551	-118.4%	1
model not run	0.000					
	DM Pilot A-22 to A-3 ms 20140327 Number of High-Yield Installation Sites 9 9 9 3 4 4 10 13 2 model not run 11 model not run 3	OM Pilot A-22 to A-35 Results from Runnes 20140327 Number of Annual GSI High-Yield Runoff (RO) Installation Sites Removed (MG) 9 10.000 9 10.000 4 3.000 4 4.000 10 10.000 2 3.000 model not run 0.000 11 10.000 3 3.000	OM Pilot A-22 to A-35 Results from Running 10 Models with ns 20140327 Number of High-Yield Annual GSI Runoff (RO) Annual Overflow Reduction at 9 10.000 -8.967 9 10.000 -8.967 9 10.000 -8.717 3 2.500 -1.529 4 3.000 -2.090 4 4.000 -2.313 10 10.000 -9.813 13 10.000 -9.775 2 3.000 -1.518 model not run 0.000 -7.272 3 3.000 -2.425	Number of Installation Sites Annual GSI Removed (MG) Annual Overflow Reduction at Shed Outfall (MG) % of GSI Gallons as Reduced Overflow 9 10.000 -8.967 -89.7% 9 10.000 -8.717 -87.2% 3 2.500 -1.529 -61.2% 4 3.000 -2.090 -69.7% 10 10.000 -9.813 -98.1% 13 10.000 -9.775 -97.8% 2 3.000 -1.518 -50.6% model not run 0.000 -7.272 -72.7% 33 3.000 -2.425 -80.8%	OM Pilot A-22 to A-35 Results from Running 10 Models with Annual GSI removed from one shed at a time ms 20140327Number of High-YieldAnnual GSI Runoff (RO)Annual Overflow Reduction at Shed Outfall (MG)% of GSI Gallons as Reduced OverflowAnnual Overflow Reduction in Overall Model (MG)910.000-8.967-89.7%-9.677910.000-8.717-87.2%-9.78732.500-1.529-61.2%-2.07343.000-2.090-69.7%-2.72044.000-9.813-98.1%-10.1061010.000-9.813-98.1%-10.1061310.000-9.775-97.8%-10.40323.000-1.518-50.6%-2.698model not run0.000-7.272-72.7%-9.76833.000-2.425-80.8%-3.551	Number of Number ofAnnual GSI Annual GSIAnnual Overflow Reduction at Reduced OverflowAnnual Overflow Reduction in at Shed OutfallAnnual Overflow Reduction in in Overall Model% of GSI Gallons as Reduced OverflowInstallation SitesRemoved (MG)Shed Outfall (MG)at Shed OutfallOverall Model (MG)in Overall Model910.000-8.967-89.7%-9.677-96.8%910.000-8.717-87.2%-9.787-97.9%32.500-1.529-61.2%-2.073-82.9%43.000-2.090-69.7%-2.720-90.7%44.000-2.313-57.8%-3.891-97.3%1010.000-9.813-98.1%-10.106-101.1%1310.000-9.775-97.8%-10.403-104.0%23.000-1.518-50.6%-2.698-89.9%model not run0.000-7.272-72.7%-9.768-97.7%33.000-2.425-80.8%-3.551-118.4%

Based on the current GOALprocess and SWMM Main Rivers model, this table shows that sheds A-34, A-29 and A-28 appear to have the three highest percent and most effective overflow reduction response rates relative to GSI gallons removed (-118% to 104%). While sheds A-25, A-30, and A-26 appear to have the lowest percent overall reductions (-83% to -91%).

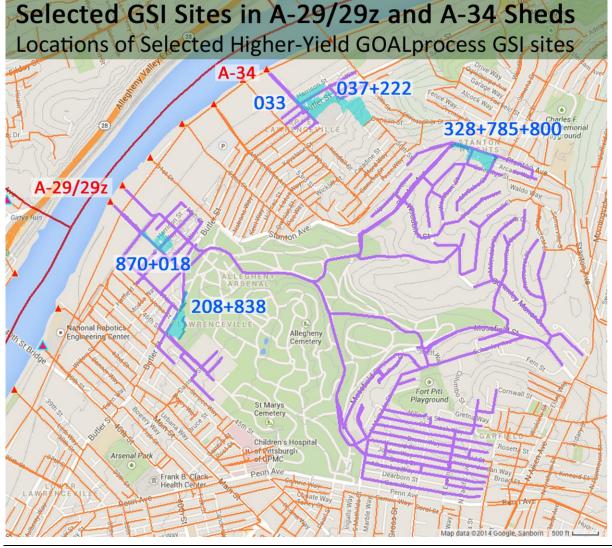
4 Task 4 – Process to Select Two Sheds for More Detailed GSI Installation Analysis, Layout, and Evaluation

SCOPE: ALCOSAN, and Landbase Systems work collaboratively to review available information on each of the 14 POCs from A-22 through A-35.

ALCOSAN and Landbase Systems selected sheds A-29/29z and A-34 by using ALCOSAN data about the potential capacity of existing regulators and a mix of high-yield statistics from Pilot Tasks 1-3, including the Landbase Systems table described in Section 3 and copied below (Initial GOALprocess+SWMM System Overflow Response to High-Yield GSI Runoff Removal within Individual POC Outfall Sheds):

GOALprocess C	DM Pilot A-22 to A-3	5 Results from Runi	ning 10 Models with	Annual GSI removed fr	om one shed at a time		
Landbase System	ms 20140327						
	Number of	Annual GSI	Annual Overflow	% of GSI Gallons as	Annual Overflow	% of GSI Gallons as	
Outfall Shad	High-Yield	Runoff (RO)	Reduction at	Reduced Overflow	Reduction in	Reduced Overflow	•
Outfall Shed	Installation Sites	Removed (MG)	Shed Outfall (MG)	at Shed Outfall	Overall Model (MG)	in Overall Model	Rank
mr_A-22-OF	9	10.000	-8.967	-89.7%	-9.677	-96.8%	7
mr_A-23-OF	9	10.000	-8.717	-87.2%	-9.787	-97.9%	4
mr_A-25-OF	3	2.500	-1.529	-61.2%	-2.073	-82.9%	10
mr_A-26-OF	4	3.000	-2.090	-69.7%	-2.720	-90.7%	8
mr_A-27-OF	4	4.000	-2.313	-57.8%	-3.891	-97.3%	6
mr_A-28-OF	10	10.000	-9.813	-98.1%	-10.106	-101.1%	3
mr_A-29-OF	13	10.000	-9.775	-97.8%	-10.403	-104.0%	2
mr_A-30-OF	2	3.000	-1.518	-50.6%	-2.698	-89.9%	9
mr_A-31-OF	model not run	0.000					
mr_A-32-OF	11	10.000	-7.272	-72.7%	-9.768	-97.7%	5
mr_A-33-OF	model not run	0.000					
mr_A-34-OF	3	3.000	-2.425	-80.8%	-3.551	-118.4%	1
ua_A-35-OF	model not run	0.000					

5 Task 5: GSI Strategies on 5 Selected Sites


SCOPE: Provide standard set of GOALprocess high-yield results for five selected high-yield projects/locations. The results at each site will include GSI that removed outflow and GSI that returns outflow to the sewer system via a slow release outlet. PDF map graphics and tables to illustrate and summarize drainage areas, estimated annual runoff volume reaching the project, and net impervious area controlled by the project.

Tasks 1-4 provided information to guide sewer sheds. Task 5 selected and high-yield sites/project locations.

Tasks 1 – 4 desktop ranking of known surface flow and network statistics of highest-yield GSI sites to assist selection of 2 sheds to focus Tasks 5 & 6 Task 5

in 2 sheds select 5 real world GSI projects based on site ranking statistics and realistic construction techniques to maximize performance layout and summarize results of shed wide top 10% high-yield site installations using Return/Remove GSI strategies

5.1 Site-Specific GSI Project Selection

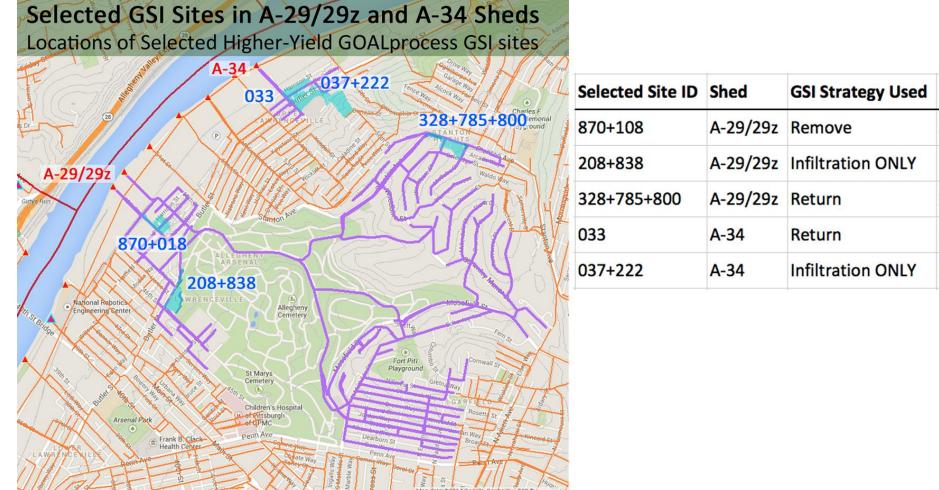
Landbase Systems used the products of Tasks 1 through 4 and a range of possible GSI strategies (Infiltrate ONLY, Return, and Remove) to select five initial and suitable high-yield sites for field review. ALCOSAN and Landbase Systems reviewed each site in the field during sunny weather. While in the field reviewing the initial selected sites, site visibility was added to the high-yield site selection criteria (the original high-yield site selection process was based purely upon runoff and impervious statistics within the focus sheds). Adding site visibility parameters allowed the team to retire two originally selected high-yield sites and update the selected list with two new locations. As a result, the final five selected high-yield sites also have relatively good visibility.

The two sites that were added for performance and visibility are '208+838' and '328+785+800'. The number or numbers in each of the selected site names represent the unique inlet ID numbers associated with each GSI installation. These inlet ID numbers represent the locations (and drainage areas) from which the proposed GSI layouts intercept and manage runoff, changing the volumes and rates at which surface water entering the combined sewer network.

After initial dry weather sites visits and selection of the final sites, Landbase Systems visited the 5 selected sites during wet weather events to verify current GOALprocess surface flow paths and drainage area analysis is consistent with real world conditions.

Task 6

the selection of 2 evaluated five

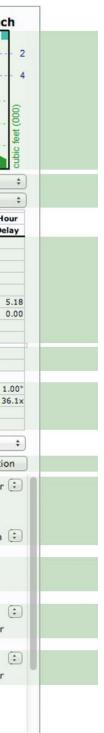

5.2 GSI Strategies reviewed on each of the five selected sites

In the 'Return GSI' strategy, outflow of non-infiltrated runoff intercepted by the GSI installation is slowly released back into the nearest downstream combined network connection.

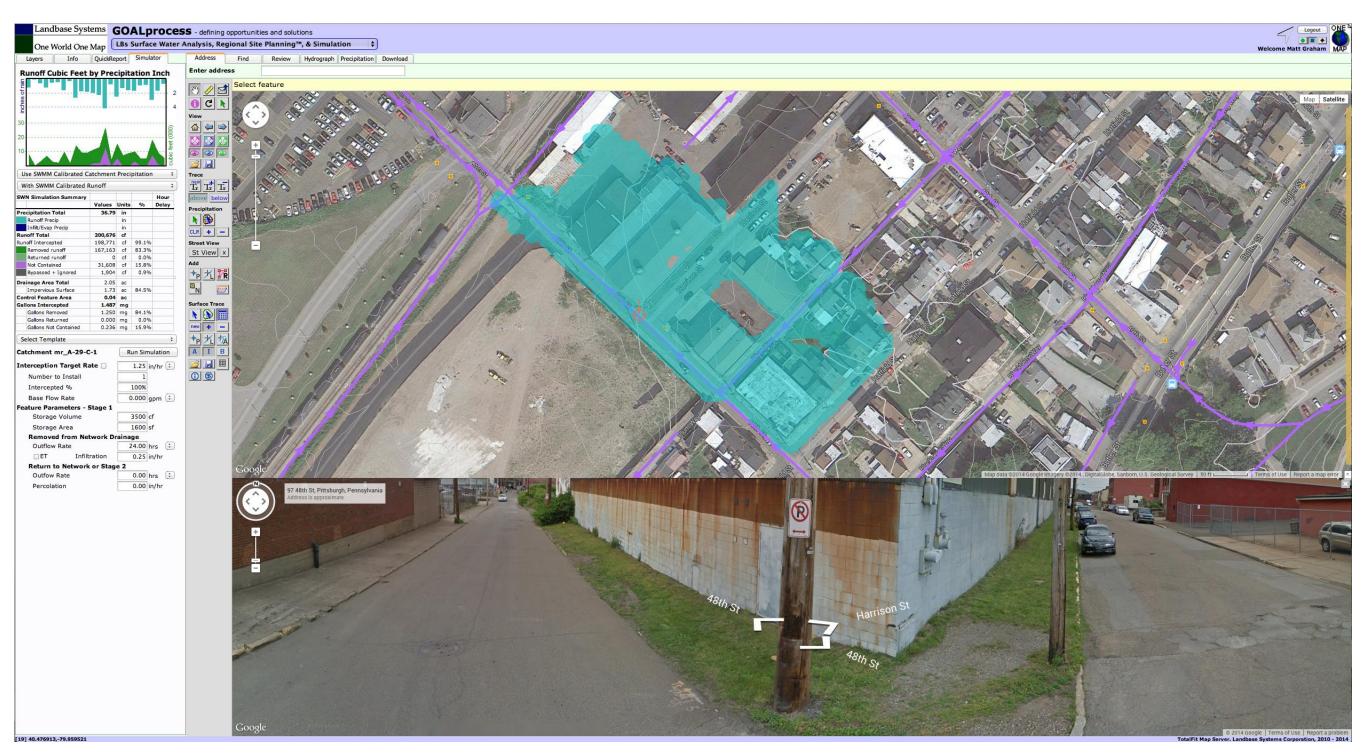
In contrast, the 'Remove GSI' strategy typically requires a new low flow collection network of small diameter pipe to convey slow release outflow of non-infiltrated water to the nearest downstream under-utilized natural infrastructure low flow release location. There is added expense for the low flow collector network, however right-sized 'Remove GSI' strategy generates higher volumes of GSI filtered water (good for environment), does not release GSI filtered water back to the combined network (treatment reduced), reduces more overflow volume, and has a lower cost per eliminated overflow gallon.

Landbase Systems reviewed A29/29z and A-34 sheds for application of 'Infiltration ONLY GSI'. We found a few dozen sites that appear they could physically support sizable 'Infiltration ONLY' GSI that could reduce localized flooding and influence combined overflows. We selected 2 'Infiltration ONLY' sites to be used in the 5 selected sites because of their visibility and fairly good performance statistics.

On each of the 5 selected sites, we reviewed up to 3 potential GSI strategies: Infiltration ONLY, Return, and/or Remove GSI. We found two of the 5 selected sites ('870+018' and '033') are not suitable for 'Infiltration ONLY' GSI so we only reviewed 'Return' and 'Remove' strategies on those sites. The table below summarizes the GSI strategy currently proposed on each of the 5 selected sites.

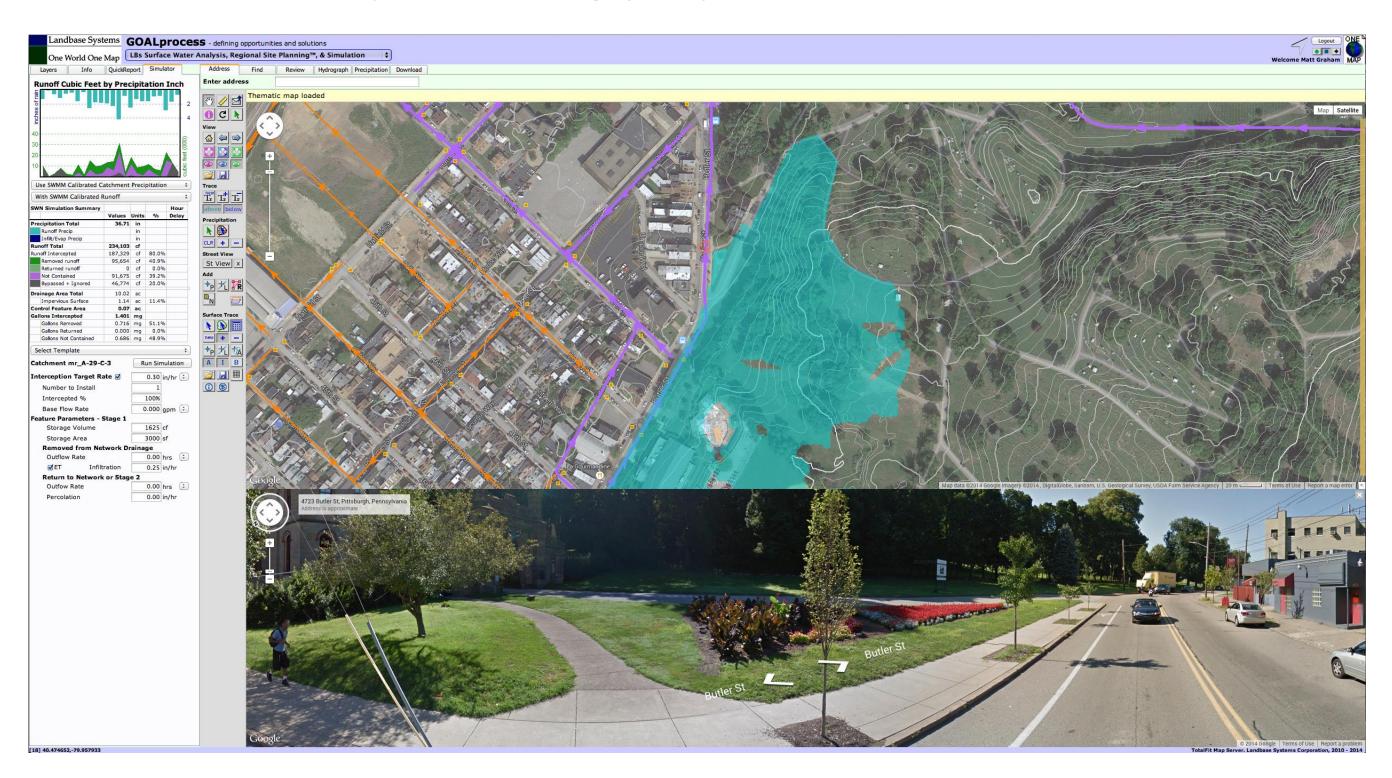


The following pages contain GOALprocess screen pictures illustrating some layout details, drainage areas, street view, and statistics for each 5 selected site layouts.

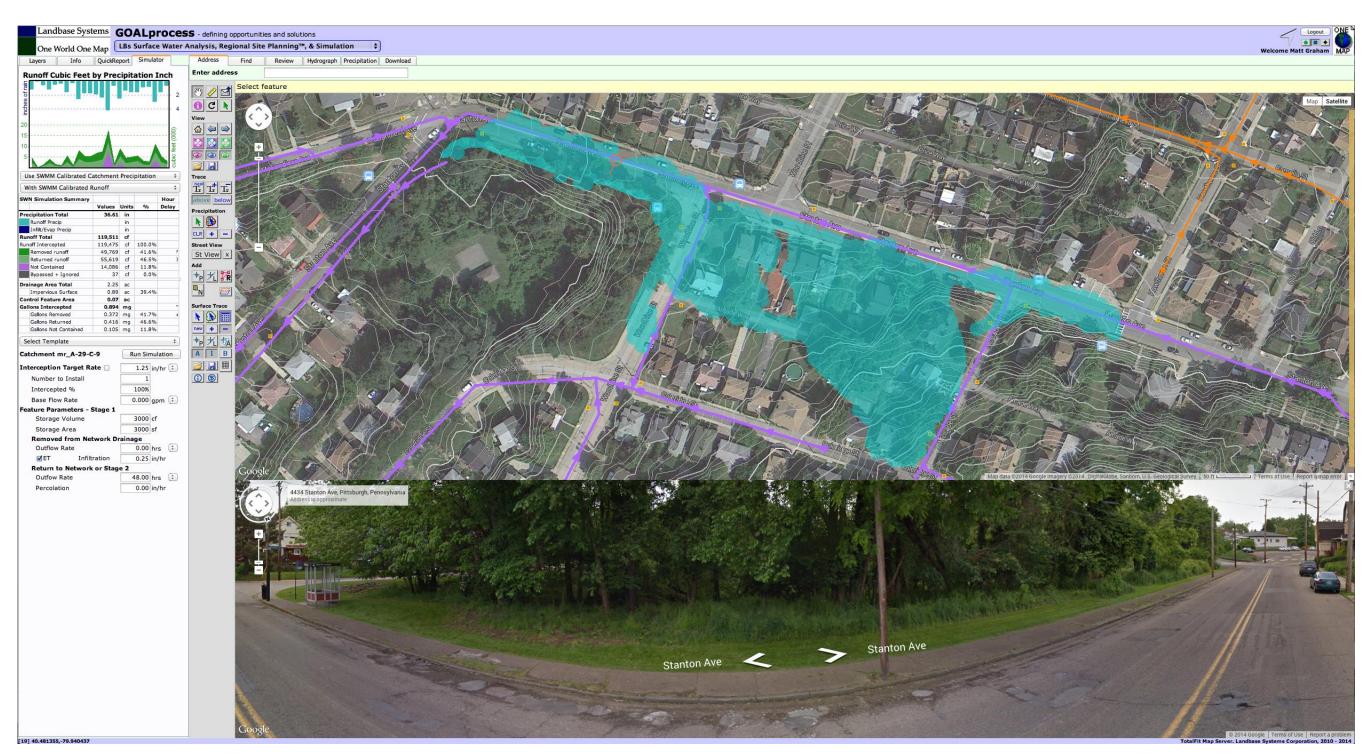

5.3 Site-specific maps, drainage areas, and Green Stormwater Infrastructure (GSI) performance simulations

Summary of GOALprocess Simulation TAB Graphs, Tables, and Inputs illustrated in the following pages

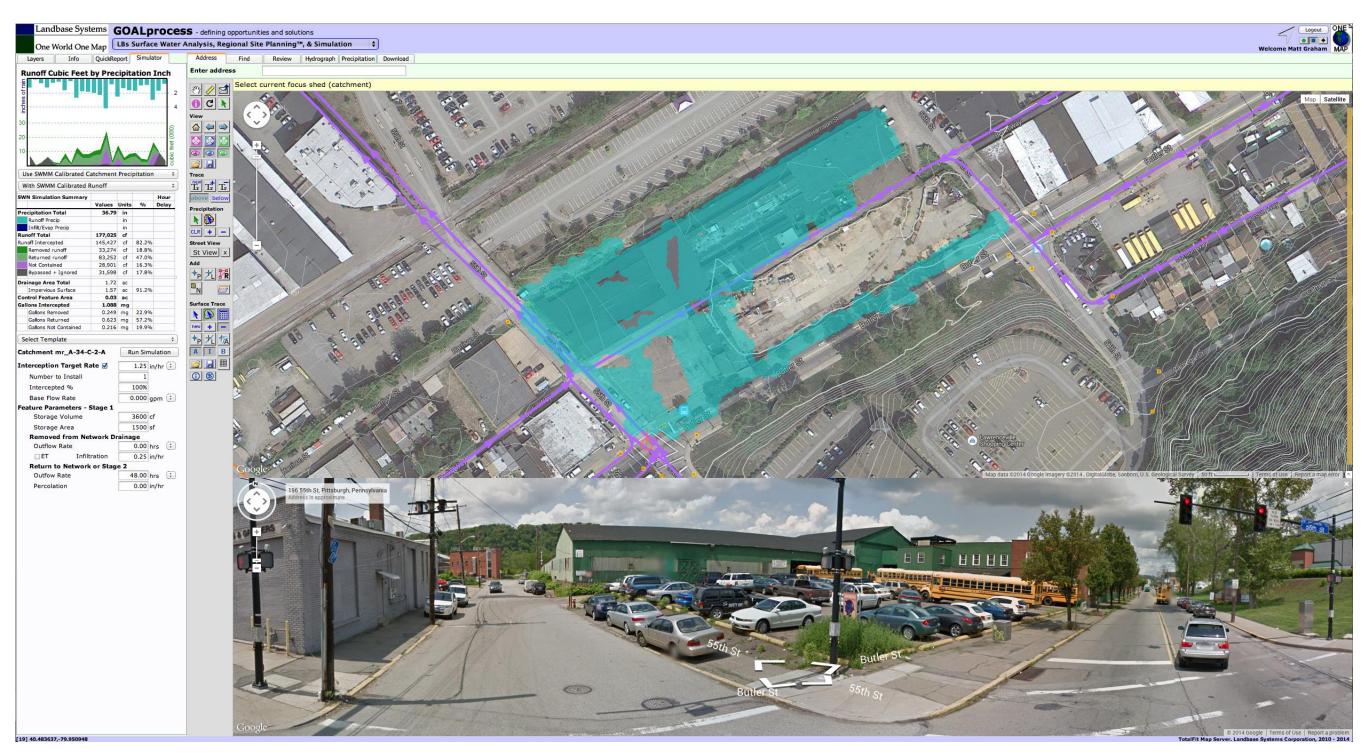
Runoff Cubic Feet				cubic feet (000)	High level hydrograph summary of precipitation and estimated runoff categories	Remo	ove	G	S
Use SWMM Calibrated C	atchment	Precip	oitation	\$	Selected precipitation database and	Use SWMM Calibrated C	atchment	Preci	pita
With SWMM Calibrated	Runoff			\$	Runoff calculation method	With SWMM Calibrated R	Runoff		
SWN Simulation Summary				Hour		SWN Simulation Summary			
Precipitation Total	Values 36.60	-	%	Delay		Precipitation Total	Values 36.60	Units	
Runoff Precip	30.00	in			Legend and totals for hydrograph summary:	Runoff Precip	30.00	in	-
Infilt/Evap Precip		in			Precipitation Summary	Infilt/Evap Precip		in	
Runoff Total	148,668	cf			r totprodott outfittery	Runoff Total	148,668	cf	
Runoff Intercepted	148,668	cf	100.0%		- · · · · · · · · · · · · · · · · · · ·	Runoff Intercepted	148,668		10
Removed runoff	30,021		20.2%	6.84	Estimated Runoff Summary	Removed runoff	129,887		8
Returned runoff	96,342		64.8%	10.31		Returned runoff		cf	
Not Contained	22,305	cf cf	15.0%			Not Contained Bypassed + Ignored	18,781	cf cf	1
Bypassed + Ignored			0.0%				17.	510	-
Drainage Area Total	4.97	1.111	20.00		Drainage area acres and impervious acres	Drainage Area Total	4.97		2
Impervious Surface Control Feature Area	1.00 0.03		20.0%			Control Feature Area	1.00	ac	4
Gallons Intercepted	1.112			1.00*		Gallons Intercepted	1.112	-	
Gallons Removed	0.225		20.2%	8.3x	Estimated performance of GSI features	Gallons Removed	0.972		8
Gallons Returned	0.721		64.8%		in million gallons	Gallons Returned	0.000		
Gallons Not Contained	0.167		15.0%			Gallons Not Contained	0.140	mg	1
Select Template				\$		Select Template			
Catchment mr_A-29-0	C-5	Ru	un Simul	ation	SWMM model catchment	Catchment mr_A-29-0	-5	R	un
Interception Target R	ate 🗆		1.00 in,	(br 🗇 🗍		Interception Target Ra	ate 🖂		1.0
					Runoff interception rate parameters			-	
Number to Install		1				Number to Install			_
Intercepted %			100%		in/hour, gpm, or cfs	Intercepted %			10
Base Flow Rate		0	.000 gp	m 🔅		Base Flow Rate		0	0.0
Feature Parameters -	Stage 1					Feature Parameters - 9	Stage 1		
Storage Volume			3600 cf		Feature void space volume in cubic feet	Storage Volume		1	36
Storage Area			1200 sf		and area in square feet	Storage Area		1	12
Removed from Ne	twork D					Removed from Net	twork D		
Outflow Rate		-	0.00 hr		Remove drainage rate parameters	Outflow Rate		-	30.
the second se	hun bi a r						matica		
	tration	-	0.25 in,	nr	hours, gpm, or CFS		tration	C. C. C. C.	0.
Return to Network	k or Stag	-		-		Return to Network	or Stag	Catholica	-
Outfow Rate		4	8.00 hr	s 🔅	Return drainage rate parameters	Outfow Rate			0.
					hours, gpm, or CFS				



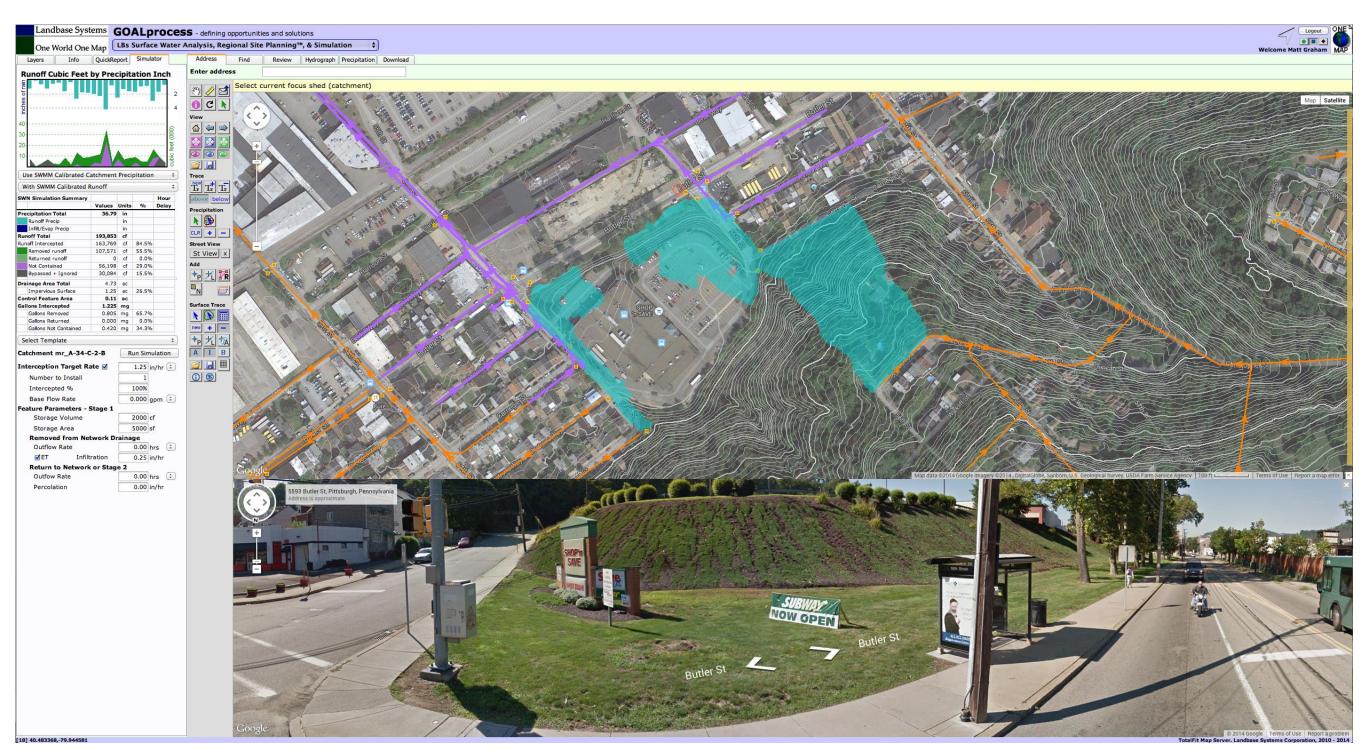
5.3.1 Site 870+038: Remove GSI Strategy in Shed A-29/29z on 48th and Harrison Streets


One known upstream inlet exists within the current defined drainage area.

5.3.2 Site 208+838: 'Infiltrate ONLY' GSI in Shed A-29/29z on Butler Street and Allegheny Cemetery

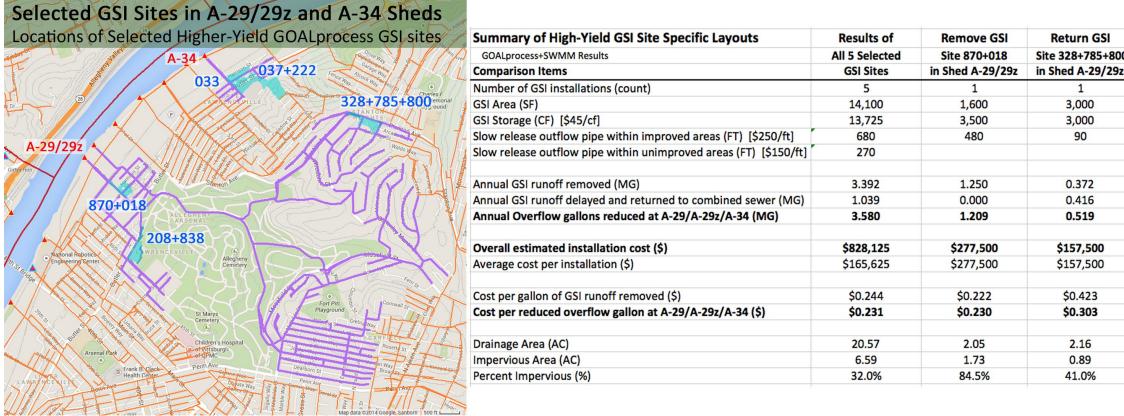

Two known inlets exist within the illustrated drainage area.

5.3.3 Site 328+785+800: Return GSI Strategy in Shed A-29/29z on Stanton Avenue and Woodbine Street


Two known inlets exist within the illustrated drainage area.

5.3.4 Site 033: GSI Return strategy in Shed A-34 on Bulter 55th Streets

One known upstream inlet exists within the current defined drainage area. Rooftop drainage areas need to be verified.


5.3.5 Site 037+222: GSI Infiltration ONLY strategy in A-34 between Butler Street between 55th and 56th

Multiple known upstream inlets exist within/adjacent to the current defined gross drainage area. Also, three to five private inlets could be added to the gross drainage of this GSI feature.

5.4 Summary of GOALprocess+SWMM Modeling Results for 5 Selected Site Installations

Results of GOALprocess+SWMM modeling a combination of 3 different GSI strategies (Remove GSI, Return GSI, and Infiltration ONLY GIS) on the 5 selected and field reviewed sites.

Main points from the table above (all runoff and overflow values are based on and generated by SWMM v513 Main Rivers model with the GOAL process used for site layout):

- Based on GOALprocess and SWMM v513 results, all five sites together appear to reduce localized flooding by 3.39mg/year and decrease combined overflows by a total of 3.58mg at outfall A-29-OF, A-29z-OF and A-34-OF at an estimated cost of \$0.23 per reduced overflow gallon.
- The one 'Remove GSI' site option reduces overflows by an estimated 1.21mg/year at an estimated cost of \$0.23 per eliminated overflow gallon.
- The two 'Return GSI' sites reduce overflows by about 1.073mg/year at an estimated cost of \$0.323 per eliminated overflow gallon
- The two 'Infiltration ONLY GSI' sites reduce overflows by about 1.294mg/year at an estimated cost of \$0.143 per eliminated overflow gallon. These two "Infiltrate ONLY" sites are not within public rights-of-way. Due to the dense development of the two study sheds (outside the cemetery), there are not many locations were the larger area requirements of high-yield 'Infiltration ONLY GSI' can be used.

Unit costs are estimated using recent bid and construction price information summarized into \$45/cubic foot for GSI, \$250/foot or \$150/foot for small diameter pipe in improved or unimproved areas.

	Return GSI	Infiltrate ONLY	Infiltrate ONLY Site 037+222 in Shed A-34		
00	Site 033	Site 208+838			
z	in Shed A-34	in Shed A-29/29z			
	1	1	1		
	1,500	3,000	5,000		
	3,600	1,625	2,000		
	110				
		90	180		
	0.249	0.716	0.805		
	0.623	0.000	0.000		
	0.554	0.713	0.571		
	\$189,500	\$86,625	\$117,000		
	\$189,500	\$86,625	\$117,000		
	\$0.761	\$0.121	\$0.145		
	\$0.342	\$0.121	\$0.205		
	1.72	10.02	4.61		
	1.57	1.14	1.25		
	91.2%	11.4%	27.2%		

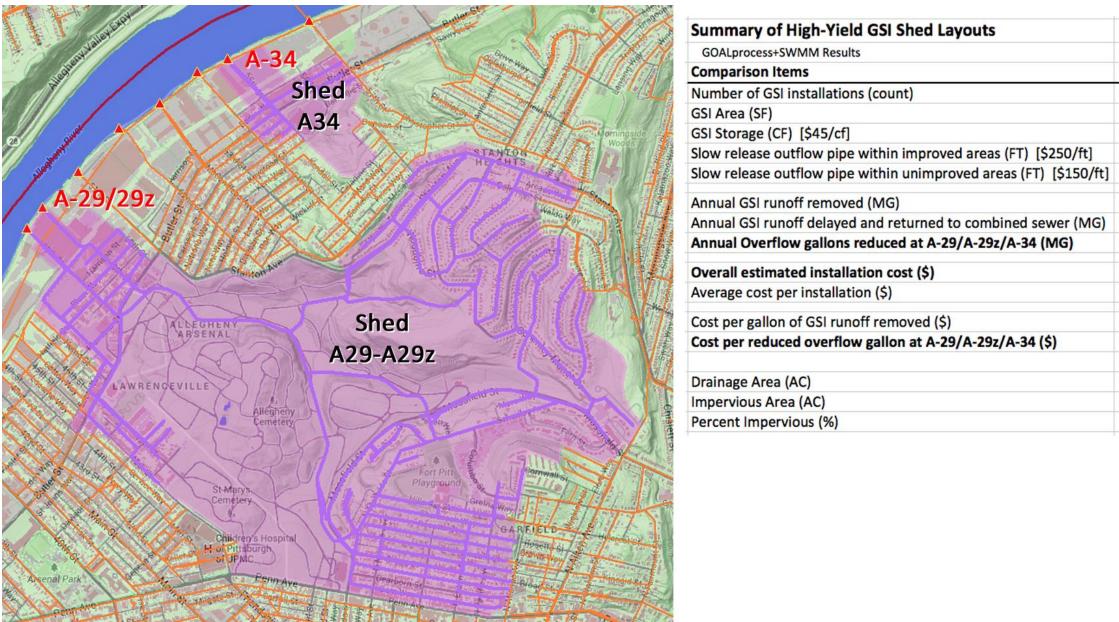
6 Task 6: Layout and Modeling of Top 10+% High-Yield Sites in Sheds A-29/29z and A-34

SCOPE: For the two selected sewersheds (A-29/29z and A-34), provide planning level cost estimates for each of the top 10% ROW installation sites in units of dollars, and dollars per gallon of overflow eliminated in the typical year. Provide a description of the method used to develop these cost estimates, including the assumptions used.

6.1 General Steps to establish an effective 'Remove' and 'Return' GSI design process

Right-sized high-yield sites provide the most effective and affordable locations to use GSI strategies. High-yield sites typically manage higher flows. To manage sediment it is important that high-yield GSI installations pretreat intercepted water to reduce maintenance and increase longevity by settling suspended solids before runoff enters the GSI treatment and/or storage volumes.

In this shed wide planning process, we reviewed all high-yield sites and selected sites that could be most easily connected along a shortest path for a low flow collector pipe network. We then used the gross drainage area of those selected site to aid in selection of additional high-yield sites. This process identified and used 78 high-yield sites in sheds A-29/29z and A-34 that based upon current knowledge, integrated databases, and modeling processes appear to support both 'Phase 1 Return GSI' and a 'Phase 2 Remove GSI'.


This process resulted in SWMM calibrated hydrographs used by the SWMM Main Rivers model to determine the effects of GSI layouts on outfalls, nodes, and conduits.

6.2 Shed wide 'Infiltration ONLY' GSI Option

Landbase Systems reviewed layouts for shed wide 'Infiltration ONLY' GSI. We found several dozen possible 'large' sites that appear they could physically support 'Infiltration ONLY' GSI to help reduce localized flooding and decrease some combined overflows. The total overall volume managed by these larger 'Infiltration ONLY' sites appears relatively small (about 6-7 million gallons) when compared to the opportunities using a phased Return/Remove GSI approach. For the volume of water it can handle, 'Infiltration ONLY' GSI can provide a cost effective solution. It is beyond the scope of this pilot study to provide a shed wide master plan showing how 'Infiltrate ONLY' GSI can be best used. Based upon our work on projects in this region, 'Infiltration ONLY' GSI has a cost effective and affordable role in key locations.

Model Performance of 'Return' & 'Remove' GSI to estimate local GSI and shed overflow results

6.3 Summary of Top High-Yield Installations of Return GSI (Phase 1 Local Flooding Reduction) and Remove GSI (Phase 2 Local Flooding and Overflow Reduction) Layouts for two different Top 10+% GSI strategies (Remove GSI and Return GSI) were created for A-29/29z and A-34.

Shed-wide implementation of a 'Phase 1 Return GSI' at the 78 selected sites appear to eliminate 30.64 million gallons of 2003 typical year overflow from A29/29z and A-34 for about \$0.36 per gallon. Implementing a low flow collector network to the 78 selected sites in a 'Phase 2 Remove GSI' requires about \$3.9 million more investment and appears to improve GSI performance by eliminating 56.96 million gallons of 2003 typical year overflow from A29/29z and A-34 for about \$0.26 per gallon. In addition, a 'Phase 2 Remove GSI' strategy eliminates an additional 31.88 million gallons of from water the combined sewer network (reduce overflow volume and treatment costs) and increases the amount of GSI filtered water released into the environment to about 58.82 million gallons during a 2003 typical year.

Return GSI	Remove GSI Phase 2 Local Flood &			
Phase 1 Local				
Flood Reduction	Overflow Reduction			
78	78			
109,050	109,050			
218,100	218,100			
5,060	17,170			
0	6,325			
14.942	58.817			
31.886	0.000			
30.644	56.985			
\$11,079,500	\$15,055,750			
\$142,045	\$193,022			
\$0.742	\$0.256			
\$0.362	\$0.264			
179.74	179.74			
65.74	65.74			
36.6%	36.6%			