CONTROLLING the SOURCE

EXECUTIVE SUMMARY

A Roadmap For Working Together on Impactful Source Control
July 2020
Table of Contents

- **Introduction** ... 2
- **Background**... 4
- **Processes to Identify and Prioritize Opportunities** 5
- **Opportunities and Concept Plans**................................... 9
- **Web Map**...15
- **Conclusions/Next Steps**.. 17
- **Full Report Organization and Useful Links**......................18
- **Acknowledgments**...19

Introduction

The Allegheny County Sanitary Authority (ALCOSAN) serves an area that spans approximately 310 square miles across 83 municipalities, including the City of Pittsburgh. Located along the Ohio River on Pittsburgh’s Northside, ALCOSAN’s wastewater treatment plant (WWTP) is one of the largest of its type in the Ohio River Valley, currently processing up to 250 million gallons of wastewater daily.

In May 2020, ALCOSAN’s Modified Consent Decree (Modified CD) with the United States Environmental Protection Agency (U.S. EPA), the Pennsylvania Department of Environmental Protection (PADEP), and the Allegheny County Health Department (ACHD) was entered by the U.S. District Court of the Western District of Pennsylvania. ALCOSAN has adopted its updated Clean Water Plan (CWP) to meet the requirements of the Modified CD.

The ultimate objective of the Modified CD and CWP is to improve and protect the water quality of the region’s streams and rivers by reducing the volume of wet weather sewer overflows by approximately seven (7) billion gallons per year by 2036.

Source control is one of the methods selected by ALCOSAN in the CWP to eliminate sanitary sewer overflows, control combined sewer overflows, and meet its compliance obligations.

Building on the source control-related efforts undertaken by ALCOSAN and our customer municipalities and authorities since the original CD was signed in 2008, ALCOSAN has developed a framework to help identify and implement impactful source control projects in the Authority’s service area.

Controlling the Source (CtS) documents that framework, including the processes that were developed and utilized; the opportunities that were identified and associated concept plans; and the Web Map that was created to facilitate access to the information.

Key Terms

- **Modified Consent Decree (Modified CD):** Agreement between ALCOSAN and the regulatory agencies for ALCOSAN to achieve compliance with the Federal Clean Water Act during periods of wet weather.

- **Clean Water Plan (CWP):** ALCOSAN’s long-term plan to reduce the overflows of diluted, untreated wastewater into the region’s streams and rivers, and meet its compliance obligations.

- **Source Control:** Practice of reducing the amount of stormwater and groundwater flow (inflow) entering the sewer system.

- **Impactful Source Control Projects:** For the purpose of this report, projects anticipated to significantly and cost-effectively reduce inflow and overflow.
Controlling the Source is intended as a resource for ALCOSAN, our customer municipalities and other regional partners to aid in:

- Identifying and implementing impactful source control projects, i.e., increasing the common understanding of where municipalities can be most effective in reducing inflow and overflow per dollar spent on source control.
- Maintaining open communication and fostering collaboration with local customer municipalities and stakeholders on source control projects.
- Leveraging planned work and local investments to extend the reach of ALCOSAN’s Green Revitalization of our Waterways (GROW) Program.
- Outlining strategies for implementing regional source control programs.
- Describing and quantifying the impact source control can have on inflows and overflows under different regional conveyance and treatment system conditions.

Source control methods considered in CtS are green stormwater infrastructure (GSI), direct stream inflow removal (DSIR), sewer separation (SS), and infiltration and inflow (I/I) reduction – including rainfall-derived infiltration and inflow. In terms of reducing inflows and overflows, DSIR, SS and GSI would typically be used in the combined sewer system (CSS) area while I/I reduction could apply to the entire service area.

Key Terms

Green Revitalization of Our Waterways (GROW) Program: Grant program created by ALCOSAN Board of Directors in 2016 as part of a system-wide effort to reduce the amount of stormwater and groundwater entering the collection system.

Green Stormwater Infrastructure (GSI): Stormwater control measures that use plant systems, soil systems, permeable pavement, stormwater management, harvest and reuse, or piping to store, infiltrate, evaporate, or reuse stormwater and reduce flows to the combined sewer system.

Direct Stream Inflow Removal (DSIR): Practice of removing direct stream inflow (DSI) from the combined sewer system.

Sewer Separation (SS): Practice of separating the combined sewer system into separate systems for sanitary and stormwater flows.

Infiltration and Inflow (I/I) Reduction: Practice of reducing groundwater infiltration into sewers and inflow such as from sources improperly connected to the sanitary sewer system.

Combined Sewer System (CSS): System that collects stormwater, domestic wastewater and industrial wastewater in the same pipe system.

Sanitary Sewer System: System designed to collect wastewater only.

Controlling the Source’s Role in the Sewer System

Reducing the amount of stormwater and groundwater entering the sewer system can:

- Reduce volume and frequency of overflows and improve water quality.
- Maintain or restore the available conveyance and treatment capacity in the system, and therefore asset performance and resilience.
- Eliminate or reduce the need for other types of new sewer infrastructure.
- Reduce the operations and maintenance, energy and chemical demands for conveying and treating wastewater.
Background

Additional information on ALCOSAN’s initiatives with links to source control, including the CWP, the GROW Program and Regionalization; and on municipal initiatives and initiatives by others, can be found in Section 2 and Appendix A of the report.

Since the first CD in 2008, ALCOSAN has undertaken several programs to move the region forward in meeting water quality standards and promoting source control. In addition to ALCOSAN’s efforts, many customer municipalities, non-profit organizations and third-party stakeholders have undertaken their own source control initiatives in recent years – some of which are represented in the timeline below.

With the approval of the Modified CD and CWP, ALCOSAN and the region are moving forward with Regionalization of multi-municipal trunk sewers, expansion of ALCOSAN’s WWTP and construction of conveyance and storage tunnels along the rivers to improve and protect the water quality of the region’s streams and rivers. In parallel, ALCOSAN and the region will continue to look for opportunities to reduce flow entering the system in the first place, and add environmentally friendly GSI components, consistent with the Adaptive Management Framework set forth in those documents.

Key Terms

Regionalization: Process of transferring ownership of multi-municipal trunk sewers and other structures to ALCOSAN.

Adaptive Management Framework: A framework included in the Modified CD and CWP that supports early implementation of GSI and other source control projects, demonstration of effectiveness, and the substitution or reduction of grey infrastructure where GSI and other source control strategies can be shown to cost effectively provide equivalent system-wide performance.
Processes to Identify and Prioritize Opportunities

Additional information on the generic process and the four processes specific to GSI, DSIR, I/I reduction, and SS can be found in Sections 3 through 7 of the report, respectively, as well as Appendix C.

The primary objective of this CtS is to identify impactful opportunities by applying a consistent and science-based planning-level process. The process considers factors such as physical constraints; projects previously identified by ALCOSAN and others; inflow and overflow reduction; overflow reduction efficiencies; and costs through the six steps represented in the illustration below. See page 6 for a full explanation of overflow reduction efficiencies, a critical factor in this process.

Some features of the process and work to date vary by source control method. As such, a generic process and four source-control specific processes were developed and are being utilized by ALCOSAN to identify and prioritize cost-effective and impactful source control opportunities for GSI, DSIR, I/I reduction, and SS.

The prioritized opportunities are intended to be further evaluated in coordination with municipalities, and would typically be implemented by the municipalities with potential funding and technical support from ALCOSAN. In addition, feedback and updates via lessons learned, input from stakeholders and other sources, etc. can be considered. Through this process and cooperation, the opportunities identified in this document can be refined and adapted and additional opportunities can be identified.

A generic process to identify and prioritize opportunities was developed, which was then adapted to the four source control methods. The process specific to GSI is illustrated below as an example.

<table>
<thead>
<tr>
<th>Context</th>
<th>Overflow Reduction Efficiencies</th>
<th>Constraints</th>
<th>Opportunities</th>
<th>Concept Plans and Costs</th>
<th>Prioritization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand context for natural and built systems, such as watershed/sewershed boundaries, land use, population, soils, and sewer infrastructure systems.</td>
<td>Highlight areas where significant overflow reduction can be achieved based on the characteristics of the sewer system.</td>
<td>Analyze constraints including natural characteristics such as shallow bedrock, steep slopes and poor soils for infiltration.</td>
<td>Consider previously identified projects and identify new opportunity areas by analyzing parcel ownership and land use with relatively low constraints; situated in areas where significant overflow reduction can be achieved.</td>
<td>Develop site-specific concept plans and cost estimates, considering integrated costs versus standalone project costs.</td>
<td>Evaluate and prioritize opportunities based on cost and anticipated overflow reduction.</td>
</tr>
</tbody>
</table>
WHAT ARE OVERFLOW REDUCTION EFFICIENCIES (OREs)?

The ability for source control projects to reduce sewer overflows varies significantly across the ALCOSAN service area. Overflow reduction efficiency is defined as the ratio between the overflow reduced and inflow reduced. If a source control project in a certain location controls 10,000 gallons of inflow, how much overflow reduction results? As shown on the map below, the results for GSI vary widely, from less than 5,000 gallons to more than 9,500 gallons (OREs of less than 0.5 and greater than 0.95, respectively). OREs can therefore be used to estimate the overflow reduction for a project by multiplying the inflow reduction by the applicable ORE.

OREs provide a guide for ALCOSAN, municipalities and other stakeholders on overflow reduction potential across the service area. This enables planning efforts to consider the areas with the greatest potential overflow reduction benefits.

An ORE is one key piece of information that can be considered, along with other important factors such as:

- The scale of source control projects. For example, a targeted project with a large inflow reduction can still achieve significant overflow reduction even in lower ORE areas. Conversely, a project with little inflow reduction will not result in much overflow reduction even in a high ORE area.
- The characteristics of the specific sewershed, including land use, soils, impervious area, the frequency and volume of overflows, and any proposed improvements to control those overflows.
- The feasibility and cost of source control in that location.

HOW DO YOU READ AN ORE MAP?

The ORE maps included in this edition of CtS and currently available through the Web Map are based on existing system conditions. ALCOSAN is currently evaluating OREs under future CWP conditions. The results associated with these evaluations will be presented in subsequent updates to CtS.

Key Terms

Existing Conditions: ALCOSAN’s hydrology and hydraulic model considers existing flows and infrastructure and treatment plant conditions as of approximately 2009. The model also assumes a typical year rainfall over a 12-month period as defined in the CWP.

Future CWP Conditions: Refers to different phases of the CWP as significant improvements are scheduled to be implemented (e.g., plant expansion, construction of conveyance and storage tunnels).
Some of the specifics associated with the process for each source control method include:

- **For GSI**, the process consisted of an analysis of mapping data to identify public properties in the CSS area with relatively low constraints (e.g., low to moderate slopes and reasonable soil infiltration capacity) situated in higher ORE areas where GSI could be implemented to manage impervious area (e.g., roads, sidewalks, buildings, and parking lots). Identified opportunity areas were then analyzed further in terms of site feasibility and to delineate drainage areas; visits were conducted to further evaluate site conditions; and concept plans and costs were developed for the highest ranked opportunities.

- **For DSIR**, the process completed to date consists of an analysis of mapping data to identify potential DSI locations based on specific information, such as lost (historic) streams, site visits to confirm findings, and a preliminary prioritization resulting in the selection of 15 DSI locations considered most viable. A DSIR feasibility study was then completed for those 15 locations.

- **For I/I reduction**, the process consists of an analysis using data collected by ALCOSAN as part of the Regionalization process (including condition assessment data on multi-municipal sewers) and targeted field work (flow isolation studies which started in 2016, etc.). The data is analyzed through a prioritization matrix to identify locations where sewer defect repairs can be developed into impactful, cost-efficient I/I reduction projects. As of May 2020, the process has been applied to specific sewersheds associated with three points of connection (POCs) with two additional sewersheds currently under evaluation. As relevant data is collected by ALCOSAN and its customer municipalities (with a focus on sewersheds shown or suspected to have areas of higher amounts of I/I), additional sewersheds will be analyzed. In the future, the process developed for the areas specified above could be adapted and applied to broader areas within ALCOSAN sanitary sewer service area.

Key Terms

Point of Connection (POC): A physical point where municipal system(s) connect to ALCOSAN’s interceptor sewers.
After construction is complete, GSI and some DSIR projects are typically more visible than other types of source control and can provide added benefits such as local water quality improvements and community benefits. However, I/I reduction and SS are also important methods as part of sound asset management and can provide added benefits such as basement flooding reduction. All methods are considered in CtS.

Previously identified projects were considered so that the process can be used to reinforce these project ideas and preliminarily evaluate their viability. Various databases of previously identified projects were used as the basis for CtS. Additional opportunities are identified in the Saw Mill Run Integrated Watershed Management Plan (currently being developed) and other documents. However, these additional opportunities are not currently tracked in the databases available for CtS. They would need to be considered in future updates of CtS for the opportunity database to be more comprehensive (see Next Steps).

- **For SS**, the process focuses on specific POCs identified by ALCOSAN within the CSS area as far as traditional storm sewer and sanitary sewer conversion is concerned. The process also considers the following two categories of SS opportunities throughout the CSS area: storm sewers within the existing combined sewer system that have the potential to be managed locally with GSI; and storm sewers currently connected to the CSS within riverfront communities, or near streams that have the potential to be disconnected from the CSS and rerouted to the adjacent receiving water or an existing separate storm sewer. As of May 2020, specific opportunity areas have been identified and work was initiated to finalize the process and select and develop viable concepts.
Opportunities and Concept Plans

Additional information on the opportunities that were identified by utilizing the established processes and on the concept plans and planning-level cost estimates for the prioritized opportunities can be found in Section 8 and Appendix D of the report.

The following opportunities were identified as of May 2020 following the established processes:

- A total of 195 potential GSI opportunities were identified and 59 were prioritized for concept development – representing a potential runoff capture for the typical year of 163 MG/yr and overflow reduction of 146 million gallons per year (MG/yr) under Existing Conditions. The planning-level estimated cost of construction associated with the 59 concepts is approximately $47 million (2017 dollars) or $0.32 per gallon of overflow removed.

- A total of 86 new potential DSI locations were identified during the desktop analysis phase; 44 were confirmed in the field as DSIs. Four were noted as needing additional field work for confirmation (due to site obstructions, access issues, or a need for more detailed information). During field investigations, 18 of the 86 new potential DSI locations were discovered (via dye testing and/or visual observation) to either connect directly to adjacent receiving waters or to flow into existing storm sewers rather than the combined system. Therefore, these sites are not DSIs but may have revealed areas previously mapped as part of the combined sewer system that are in fact separate. This information will be considered in the model and GIS updates that are underway under a separate effort. High-ranking new DSI locations were selected to be included in a DSIR feasibility study, completed by SKELLY and LOY, Inc. in May 2020. There are 11 sites recommended for further evaluation; 10 of which may be suitable for removal through new conveyance and one of which may be suitable for management using GSI. If the viability is confirmed and the DSIRs are implemented, the study estimates that these projects would manage approximately 39 MG/year of inflow volume.

- A total of 100 SS opportunity areas were identified as illustrated in the figure on page 12 and are now being further evaluated. The total potential contributing drainage area is estimated to be approximately 1,300 acres (380 impervious acres). Results will be reported in future updates to the CtS.

- The I/I reduction opportunities process has been applied to specific sewersheds associated with three POCs within the study area with two additional currently under evaluation. Additional POCs are being investigated as relevant data is collected by ALCOSAN. Initial results are reported in Section 8 of the main report and full results will be reported in future updates to the CtS.

The various opportunities outlined above would generally not be implemented or funded solely by ALCOSAN. The opportunities would need to be further evaluated in coordination with municipalities and other stakeholders as applicable. Opportunities would typically be implemented by the municipalities, with potential funding and technical support from ALCOSAN.

Key Terms

Typical Year: Refers to typical rainfall over a 12-month period as defined in the CWP.

Planning-Level Estimated Cost: A cost estimate that carries uncertainties. Actual cost would be expected to be up to 50% higher or up to 30% lower than this estimate.
Identified GSI Opportunity Locations. Projects with higher OREs will generally provide more overflow reduction than similar projects with lower OREs.
Identified DSI Locations by Confirmation Status.

DSI Locations by Status
- ★ Project Complete
- ✭ Previously Identified Location
- ✰ New Location Confirmed in Field
- ★★ Additional Field Verification

Identified DSI Locations

- **Drainage Area Removed from CSS**
- **Potential Drainage Area to Remove CSS**
- **ALCOSAN Service Area**
- **Municipal Boundaries**
- **Major Rivers**

Controlling the Source | Executive Summary | 11
Identified Sewer Separation Opportunities Areas by Status.

Previously Identified SS Opportunities
- GROW Project ideas identified by Municipalities
- Other Opportunities identified in SRS

New SS Opportunities
- Potential to manage with GSI
- Potential to separate directly to River and/or add to existing projects

Data Sources:
1. ALCOSAN GROW project database; 2. MSRS database; 3. ALCOSAN SS opportunity database
Concept plans similar to the one shown below for 70 GSI and DSI locations were developed - representing a potential runoff capture of over 200 million gallons per year.

Potential GSI Location - Vegetated Bumpout or Subsurface Storage/Infiltration to manage N Canal St and part of S Canal St (typical of 2)

Concept plans associated with each of the GSI and DSIR projects listed below are available in CtS.

<table>
<thead>
<tr>
<th>Basin</th>
<th>Municipality</th>
<th>Project Type</th>
<th>Project ID</th>
<th>Site Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM</td>
<td>Braddock</td>
<td>GSI</td>
<td>UM-19</td>
<td>Library and Braddock parking lot</td>
</tr>
<tr>
<td>UM</td>
<td>Braddock</td>
<td>GSI</td>
<td>UM-36</td>
<td>Vacant lot at Kenmawr Ave and Hamilton St</td>
</tr>
<tr>
<td>CC</td>
<td>Carnegie</td>
<td>GSI</td>
<td>CC-01</td>
<td>Seventh Avenue Park</td>
</tr>
<tr>
<td>CC</td>
<td>Carnegie</td>
<td>GSI</td>
<td>CC-02</td>
<td>Carnegie Station Park and Ride</td>
</tr>
<tr>
<td>CC</td>
<td>Crafton</td>
<td>GSI</td>
<td>CC-10</td>
<td>Port Authority Park and Ride Crafton</td>
</tr>
<tr>
<td>CC</td>
<td>Crafton</td>
<td>GSI</td>
<td>CC-12</td>
<td>Crafton Park</td>
</tr>
<tr>
<td>UM</td>
<td>Homestead</td>
<td>GSI</td>
<td>UM-31</td>
<td>Parking Lot at McClure and 7th Ave</td>
</tr>
<tr>
<td>UM</td>
<td>Homestead</td>
<td>GSI</td>
<td>UM-32</td>
<td>Parking Lot at NW corner of Ann and 7th</td>
</tr>
<tr>
<td>UM</td>
<td>Homestead</td>
<td>GSI</td>
<td>UM-33</td>
<td>Parking Lot at NE corner of Ann and 7th</td>
</tr>
<tr>
<td>CC</td>
<td>McKees Rocks</td>
<td>GSI</td>
<td>CC-25</td>
<td>Furnace St Extension Lot</td>
</tr>
<tr>
<td>UM</td>
<td>Munhall</td>
<td>GSI</td>
<td>UM-35</td>
<td>Munhall Fire Playground</td>
</tr>
<tr>
<td>CC</td>
<td>Pittsburgh</td>
<td>DSI</td>
<td>CC-04</td>
<td>Idlewod Road</td>
</tr>
<tr>
<td>CC</td>
<td>Pittsburgh</td>
<td>DSI</td>
<td>CC-14</td>
<td>Greenway Drive 1</td>
</tr>
<tr>
<td>CC</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>CC-28</td>
<td>Oakland Park</td>
</tr>
<tr>
<td>CC</td>
<td>Pittsburgh</td>
<td>DSI</td>
<td>CC-28a</td>
<td>Greenway Drive 2</td>
</tr>
<tr>
<td>CC</td>
<td>Pittsburgh</td>
<td>DSI</td>
<td>CC-28b</td>
<td>Greenway Drive 3</td>
</tr>
<tr>
<td>CC</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>CC-29</td>
<td>Bishop Canevin School</td>
</tr>
<tr>
<td>CC</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>CC-30</td>
<td>Port Authority Parking Lot</td>
</tr>
<tr>
<td>CC</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>CC-42</td>
<td>Pittsburgh Classical Academy</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-03</td>
<td>Fowler Playground</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-15</td>
<td>East Park</td>
</tr>
<tr>
<td>Basin</td>
<td>Municipality</td>
<td>Project Type</td>
<td>Project ID</td>
<td>Site Name</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-16</td>
<td>West Park Ballfield</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-17</td>
<td>West Park near Brighton Rd</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>DSIR</td>
<td>MR-27</td>
<td>Shop ’n Save</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-29</td>
<td>Arsenal School</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-32</td>
<td>Friendship Park</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-33</td>
<td>Friendship Community Group Park</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-34</td>
<td>Enright Parklet</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-35</td>
<td>Garland Parklet</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-36</td>
<td>Urban Redevelopment Authority Lots</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-37</td>
<td>Osceola Parklet</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-40</td>
<td>Liberty School</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-52</td>
<td>Magee Playground</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-55</td>
<td>Phillips K-5 School</td>
</tr>
<tr>
<td>MR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>MR-56</td>
<td>Armstrong Playground</td>
</tr>
<tr>
<td>SMR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>SMR-01</td>
<td>Warrington Field & Rec Center</td>
</tr>
<tr>
<td>SMR</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>SMR-02</td>
<td>Knoxville Elementary School</td>
</tr>
<tr>
<td>SMR</td>
<td>Pittsburgh</td>
<td>DSIR</td>
<td>SMR-08</td>
<td>Crane Avenue</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-01</td>
<td>Natoli Field</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-03</td>
<td>Chadwick Playground</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>DSIR</td>
<td>UA-04</td>
<td>Sawyer Street</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-05</td>
<td>G-Tech Strategies Sunflower Garden</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-06</td>
<td>Crescent Early Childhood Center Parking</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-21</td>
<td>Urban Redevelopment Auth of Pittsburgh</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-22</td>
<td>Homewood Montessori School</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-23</td>
<td>Westinghouse Park</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-24</td>
<td>Urban Redevelopment Auth of Pittsburgh</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-25</td>
<td>City Vacant Lot</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-27</td>
<td>Westinghouse Academy Track & Football Field</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-34</td>
<td>Urban Redevelopment Authority Vacant Lot</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-35</td>
<td>Paulson Playground</td>
</tr>
<tr>
<td>UA</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UA-37</td>
<td>Mellon Park</td>
</tr>
<tr>
<td>UM</td>
<td>Pittsburgh</td>
<td>DSIR</td>
<td>UM-16</td>
<td>Kilbourne Street</td>
</tr>
<tr>
<td>UM</td>
<td>Pittsburgh</td>
<td>DSIR</td>
<td>UM-18</td>
<td>Flowers Avenue</td>
</tr>
<tr>
<td>UM</td>
<td>Pittsburgh</td>
<td>DSIR</td>
<td>UM-19a</td>
<td>Giddings Street 1</td>
</tr>
<tr>
<td>UM</td>
<td>Pittsburgh</td>
<td>DSIR</td>
<td>UM-19b</td>
<td>Giddings Street 2</td>
</tr>
<tr>
<td>UM</td>
<td>Pittsburgh</td>
<td>DSIR</td>
<td>UM-20</td>
<td>Gladstone Street</td>
</tr>
<tr>
<td>UM</td>
<td>Pittsburgh</td>
<td>GSI</td>
<td>UM-43</td>
<td>Blair Street Park</td>
</tr>
<tr>
<td>UM</td>
<td>Rankin Borough</td>
<td>GSI</td>
<td>UM-25</td>
<td>Hawkins Village</td>
</tr>
<tr>
<td>UA</td>
<td>Sharpsburg</td>
<td>GSI</td>
<td>UA-12</td>
<td>Heinz Memorial Field</td>
</tr>
<tr>
<td>UA</td>
<td>Sharpsburg</td>
<td>GSI</td>
<td>UA-13</td>
<td>Marion Gerardi Memorial Park</td>
</tr>
<tr>
<td>UA</td>
<td>Sharpsburg</td>
<td>GSI</td>
<td>UA-15</td>
<td>Sharps Terrace</td>
</tr>
<tr>
<td>UA</td>
<td>Sharpsburg</td>
<td>GSI</td>
<td>UA-16</td>
<td>The Watson Institute</td>
</tr>
<tr>
<td>UA</td>
<td>Sharpsburg</td>
<td>GSI</td>
<td>UA-29</td>
<td>Kennedy Park</td>
</tr>
<tr>
<td>UA</td>
<td>Sharpsburg</td>
<td>GSI</td>
<td>UA-30</td>
<td>Municipal Parking Lot</td>
</tr>
<tr>
<td>UA</td>
<td>Sharpsburg</td>
<td>GSI</td>
<td>UA-31</td>
<td>Sharpsburg Library & Community Garden</td>
</tr>
<tr>
<td>CC</td>
<td>Stowe Township</td>
<td>GSI</td>
<td>CC-24</td>
<td>Sto-Rox HS Community Field</td>
</tr>
<tr>
<td>CC</td>
<td>Stowe Township</td>
<td>GSI</td>
<td>CC-41</td>
<td>School Bus Lot</td>
</tr>
<tr>
<td>LO</td>
<td>Stowe Township</td>
<td>GSI</td>
<td>LO-01</td>
<td>Pleasant Ridge Public Housing</td>
</tr>
<tr>
<td>UM</td>
<td>Swissvale</td>
<td>GSI</td>
<td>UM-23</td>
<td>Swissvale Park and Ride</td>
</tr>
</tbody>
</table>
Web Map

Additional information can be found in Section 9 and Appendix B of the report.

An interactive Web Map was created to facilitate access to the information presented in CtS, including existing conditions, previously identified project locations, overflow reduction efficiencies, and identified opportunities.

The Web Map is hosted on ALCOSAN’s website.

A complete instruction guide is available in Appendix B of the report.

You can easily consult the Web Map to see whether any opportunities were identified to date in a community and to look at other information such as OREs and constraints.

The ALCOSAN Service Area, Planning Basin, and ORE layers are shown by default.

Upon opening, the map will automatically zoom to the full ALCOSAN service area.
Zoom into an area of focus and click on the map to view the pop-up legend with different layers of information.

Zooming further into the map will display icons indicating potential project opportunities. Click on the point to reveal a pop-up legend containing opportunity details and concept plans.
Conclusions/Next Steps

Complete conclusions and recommendations can be found in Section 10 of the report.

As of May 2020, the development and application of the framework has led to:

- The identification of 195 GSI opportunities and the development of 59 GSI concept plans – representing a potential runoff capture for the typical year of 163 million gallons per year (MG/yr) and potential overflow reduction of 146 MG/yr under Existing Conditions. The planning-level estimated cost of construction associated with the 59 concepts is approximately $47 million (2017 dollars) or $0.32 per gallon of overflow removed.
- The identification of 44 new DSI locations and the selection of 15 DSI locations that were investigated to identify specific DSIR opportunities.
- The definition of a process to leverage the extensive data collection and analysis work performed by ALCOSAN under the Regionalization Program and the results of field investigations in sewersheds near multi-municipal trunk sewers to identify impactful I/I reduction opportunities.
- The identification of 100 new sewer separation opportunity areas in the CSS service area.
- The engagement of ALCOSAN, municipalities and other stakeholders on specific opportunities identified through the framework and potential next steps.
- The creation of a Web Map to facilitate information sharing and collaboration between parties.
- A better understanding of opportunities throughout the service area and engagement with municipalities and stakeholders on upcoming GROW funding cycles and associated funding opportunities.
- The improved understanding of the potential impact of the identified source control opportunities on ALCOSAN’s regional collection system and wet weather sewer overflow reduction.

ALCOSAN will work with municipalities to use the framework to identify, evaluate and implement source control projects and leverage GROW and other funding sources. ALCOSAN will also complete the work in progress described previously, continue to develop and refine CtS and publish updates as appropriate. ALCOSAN calls on municipalities and other partners to work with us, and work together to:

- Further evaluate and implement prioritized opportunities from CtS based on municipal priorities and funding availability.
- Adapt and apply the framework to their own communities.
- Pursue or secure funding for implementing source controls (GROW and other grants, loans, stormwater fees).
- Provide feedback to ALCOSAN for consideration in future updates.

We also call on all stakeholders to continue improving ordinances, codes, and programs to facilitate, incentivize or require GSI and other source controls, and to take other actions aligned with our common goal to improve and protect the water quality of the region’s streams and rivers by Controlling the Source.

CtS Updates

CtS is intended as a living document. Specific updates envisioned at this time include the incorporation of the results associated with work in progress, including the development and application of OREs under different CWP conditions, and the application of the I/I reduction-specific process to all the sewersheds currently being evaluated by ALCOSAN.

In addition, it is anticipated that CtS will be updated to account for new data/information (e.g., new stormwater system mapping; new opportunities identified by ALCOSAN and others; hydrology and hydraulic model updates; new cost information; additional flow monitoring and flow isolation study data; and relevant data collected as part of the Modified CD requirements from 2020 to 2025). Also there may be updates around potential improvements identified through implementation of the framework, such as improved source control opportunity and projects database integration and questions and feedback from stakeholders; or other sources.

Updates will be posted on ALCOSAN’s website.
CtS builds upon ALCOSAN’s commitment to collaborate with regional stakeholders to advance investments in impactful GSI and other source control projects. CtS is the latest of three major publications on the subject, following Starting at the Source published in 2015, a guidance manual to support GSI implementation and an accompanying manual on monitoring source control projects published in 2019.

Funding Resources Beyond the GROW Program

Appendix E of CtS identifies potential funding sources including grant programs available from public entities, ranging from the Commonwealth Financing Authority, the U.S. Department of Agriculture, the Pennsylvania Department of Community and Economic Development to the Pennsylvania PA Department of Conservation and Natural Resources or Pennsylvania Infrastructure Investment Authority. The Appendix also includes a summary of potential philanthropic funding sources.

Full Report Organization and Useful Links

The development of CtS generated a large amount of information, including overflow reduction efficiencies; GSI constraints and opportunities; GSI planning-level cost estimates; opportunity identification methodologies for DSI, I/I and SS; and funding resources. The information in the full CtS report is organized into 10 sections and various appendices as shown below.

- Section 1 – Introduction
- Section 2 – Background on Source Control-Related Efforts
- Section 3 – Generic Opportunity Identification and Evaluation Process
- Section 4 – GSI-Specific Process
- Section 5 – DSIR-Specific Process
- Section 6 – I/I Reduction-Specific Process
- Section 7 – SS-Specific Process
- Section 8 – Identified Opportunities
- Section 9 – Web Map
- Section 10 – Conclusions

Appendix A – Additional Background on Source Control-Related Efforts
Appendix B – ArcGIS Online Web Map Resources
Appendix C – Opportunities Identification and Evaluation Process Support
Appendix D – Identified Opportunities – List and Concept Plans
Appendix E – Funding Resources

The full CtS report and the Web Map are available to the public on our website (www.alcosan.org/) under “Our Plan.” Additional resources associated with the 2019 Clean Water Plan and related programs are available under the same link. Additional resources associated with the 2019 Clean Water Plan and related programs are available under the same link. Additional information about the GROW Program is also available under the dedicated Municipal Log-In website.
Acknowledgments

We would like to thank the following people and organizations for their contributions to CtS as peer reviewers:

- Allegheny County, Office of the County Executive: Darla Cravotta
- HDR: Chad Davis (Allegheny County Act 167 Stormwater Management Plan representative)
- KC Water (Kansas City, Missouri): Lisa Treese, Priya Iyengar, Andy Sauer, Brenda Macke
- Northeast Ohio Regional Sewer District (Cleveland, Ohio): Kimberly Colich
- Pittsburgh Water and Sewer Authority: Beth Dutton, Ben Grunauer, Ana Flores, Jim Turner, Ryan Quinn, Maria Natoli, James Stitt
- RAND Corporation: Jordan Fischbach
- University of Pittsburgh | Pittsburgh Collaboratory for Water Research, Education, and Outreach: Eitan Shelef, Dan Bain, Eric Perry
- 3 Rivers Wet Weather: Annie Quinn

We have made every effort to address their comments in this edition of CtS and we are committed to making further improvements in future editions.

We would like to acknowledge the Board of Directors of the Allegheny County Sanitary Authority and the leadership team for their continued support on source control efforts.

We would also like to thank our consultant, Jacobs, and their subconsultants, Collective Efforts, Cosmos Technologies, David Caliguiri, DLZ, Moore Design Associates, Mulberry Public Affairs, Sigma Associates, and Sci Tek Consultants.

Finally, and most importantly, we would like to acknowledge all of our customer municipalities and other local stakeholders that have directly or indirectly contributed to Controlling the Source, whether through meeting/workshop attendance, source control project implementation, general interest in source control, or through other channels.

Source control is happening throughout the region thanks to our customer municipalities and other stakeholders.