

G.2 APPX GEOTECH R	REPORTS FOR A (37 pages)	-65, A-80, & M-34

September 11, 2025 (E.Wolff@gaiconsultants.com)

GAI Consultants, Inc. 384 East Waterfront Drive Homestead, PA 15120-5005

Attention: Emma N. Wolff, P.E.

Senior Engineering Manager

Re: Allegheny County Sanitary Authority

Professional Services for Gate Replacements

Project S-494

GMI Project No. 25036

Temporary Shoring Parameters at Structure A-80

Ladies and Gentlemen,

GeoMechanics, Inc. (GMI) is pleased to present the findings for installation of temporary shoring at Allegheny County Sanitation Authority (ALCOSAN) Structure A-80 at 1290 Old Freeport Road, Pittsburgh, Pennsylvania. This letter summarizes the information obtained during our investigation and presents recommendations for the design of temporary shoring by others for installation of the new structure.

1.0 LOCATION

The new structure site is located on the property of the Squaw Run Pump Station at 1290 Old Freeport Road in the City of Pittsburgh, Pennsylvania (see Figures 1 and 2). It is bounded by Old Freeport Road at the north and by Sycamore Run to the east. The site lies in the Allegheny River flood plain (see Figure 3).

2.0 DATA OBTAINED

The data collection phase of the investigation included drilling of a test boring and laboratory testing on samples obtained from the boring. As agreed, the test boring was scheduled to be terminated at a depth of $20\pm$ feet or at refusal on bedrock, whichever was shallower.

GMI obtained the test boring, A80-1, at the general location shown on Figure 4 on July 14, 2025 using in-house personnel and equipment. The boring was advanced in soils to the termination depth of 20 feet by hollow-steam augering with standard penetration test taken at 3-foot center-to-center intervals. The split-spoon samples were delivered to our laboratory where they were logged by a Geotechnical Specialist. His description of the materials sampled in the boring and the spoon blows from the standard penetration tests are recorded on the attached Test Boring Record.

Laboratory moisture content and classification tests were conducted on two (2) sets of jar samples from the test boring. The results of these tests, when used in conjunction with the standard penetration resistance test results from the test boring, can be related empirically with the shear strength of the soils for use in lateral capacity analyses. The results of the moisture content and classification tests are presented on the attached Figures LT-1 and LT-2.

3.0 DISCUSSION OF SUBSURFACE CONDITIONS

The in-place soils sampled in the boring were from two (2) distinct geologic origins: man-made fill and alluvial deposits. Man-made fill was sampled from ground surface down to a depth of 10.5± feet and consisted of silty to clayey gravel with some sand. The in-place relative density of the fill, as measured by the standard penetration tests in the test boring, was loose. The moisture content was damp near ground surface and moist below. A strong organic odor was noted in the sampled from 9.0 to 10.5 feet, possibly due to the original topsoil layer that may not have been completely removed.

Alluvial deposits were present from the bottom of the man-made fill down to the lowest depth sampled of 20 feet. Alluvial soils are those that are transported by the stream action of

September 11, 2025

Sycamore Run and the nearby Allegheny River and deposited at the site during periods of overbank flow. The alluvium at the proposed construction site consisted of an upper 4.5±-foot thick layer of silty sand and gravel underlain by 5± feet of silty clay with little sand and gravel. The in-place relative density of the alluvial sand and gravel was medium dense, and the in-place consistency of the alluvial clay was stiff. The moisture content of the alluvium was wet throughout.

4.0 ANALYSIS AND CONCLUSIONS

The purpose of the drilling and testing performed at the proposed construction site was to identify the geotechnical engineering parameters that will be included in the specifications for design of the proposed temporary shoring during construction. The results of our analysis and conclusions drawn therefrom are summarized as follows:

- For non-gravity cantilever walls with continuous vertical wall elements, design the temporary shoring using Figure 3.11.5.6-3 from the AASHTO LRFD Bridge Design Specifications, Eighth Edition, 2017.
- For anchored walls constructed from the top down in cohesionless soils, use the appropriate earth pressure distribution presented on Figure 3.11.5.7.1.1 from the AASHTO LRFD Bridge Design Specifications, Eighth Edition, 2017 to design the temporary shoring.
- Use the following engineering parameters for the in-place materials:
 - $\begin{array}{l} \circ \quad & \underline{Existing\ Fill} \\ \hline USCS\ Classifications:\ GC,\ gm \\ N_{av} = 8 \\ \phi' = 28^{\circ} \\ c' = 0\ PSF \\ \gamma_m = 115\ PCF,\ \gamma_{SAT} = 120\ PCF,\ \gamma_{SUB} = 57.8\ PCF \end{array}$

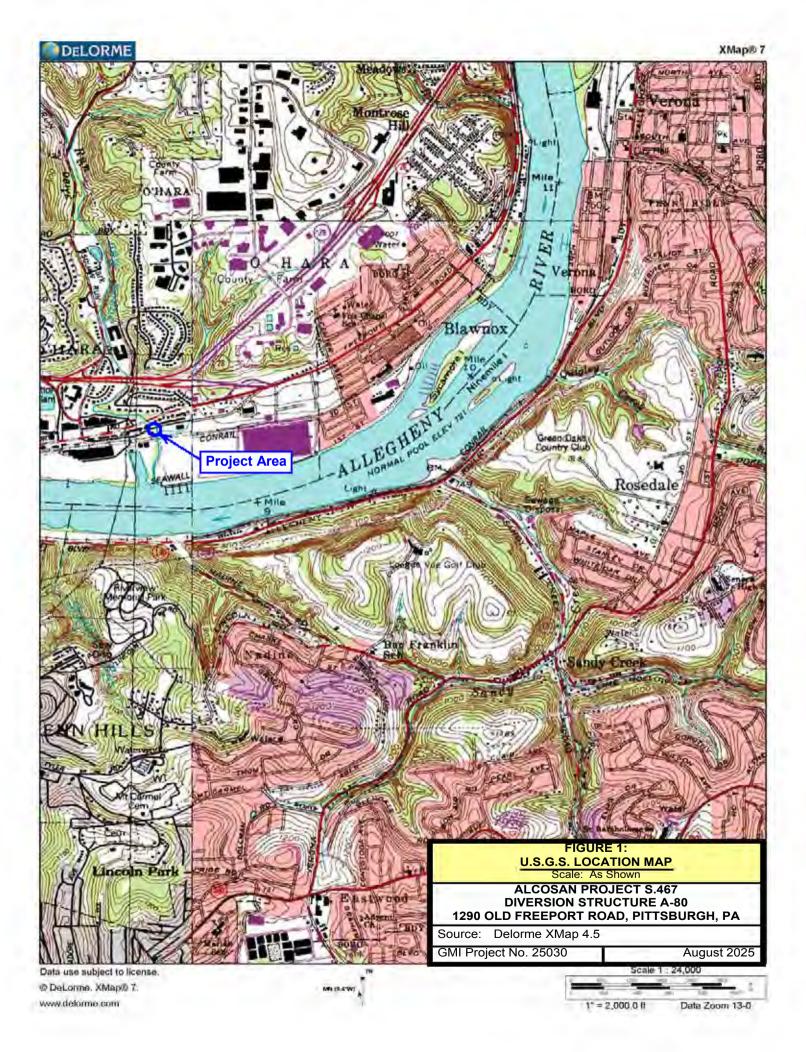
September 11, 2025

 $\begin{array}{l} \circ \quad & \underline{Alluvial\ Soils-Granular} \\ & USCS\ Classifications:\ sm/sc \\ & N_{av} = 25 \\ & \varphi' = 32^{\circ} \\ & c' = 0\ PSF \\ & \gamma_m = 120\ PCF,\ \gamma_{SAT} = 125\ PCF,\ \gamma_{SUB} = 62.6\ PCF \end{array}$

 $\begin{array}{ll} \circ & \underline{Alluvial\ Soils-Cohesive} \\ & USCS\ Classifications:\ CL \\ & N_{av}=12 \\ & \varphi'=28^{\circ} \\ & c'=0\ PSF \\ & \gamma_m=120\ PCF,\ \gamma_{SAT}=125\ PCF,\ \gamma_{SUB}=62.6\ PCF \end{array}$

• Assume the water table to be at or above the 100-year flood elevation along Sycamore Run

We wish to extend our appreciation for this opportunity to be of service to you on this interesting and challenging project. Should you have any questions regarding this letter or require additional information, please contact us.



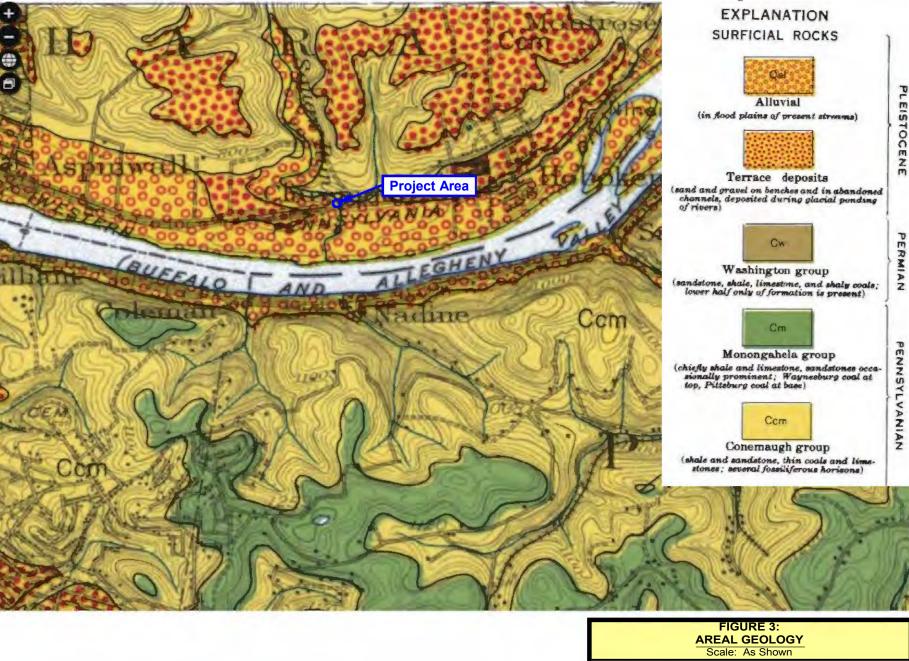
Very truly yours,

GEO-MECHANICS, INC.

Walter M. Lorence, P.E. Executive Vice President

WML:lg Attachments: Figures 1, 2, 3 and 4 Test Boring Record Figures LT-1 and LT-2

FIGURE 2: AERIAL PHOTOGRAPH OF SITE


Scale: As Shown

ALCOSAN PROJECT S.467 DIVERSION STRUCTURE A-80 1290 OLD FREEPORT ROAD, PITTSBURGH, PA

Source: Google Earth. Imagery Date: 8/18/23

GMI Project No. 25030

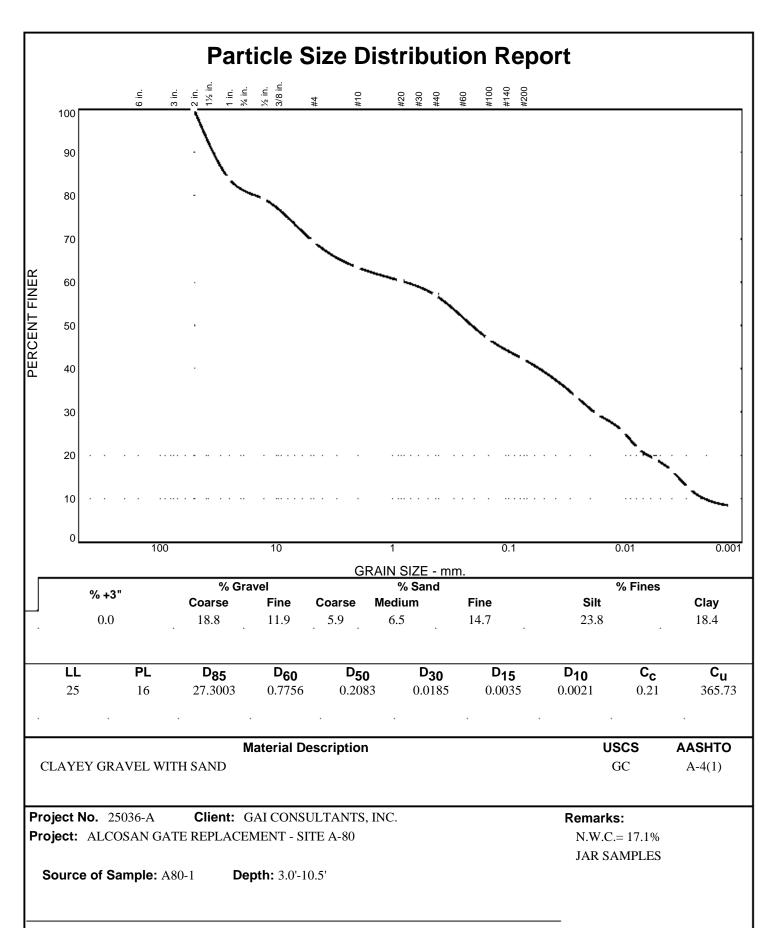
August 2025

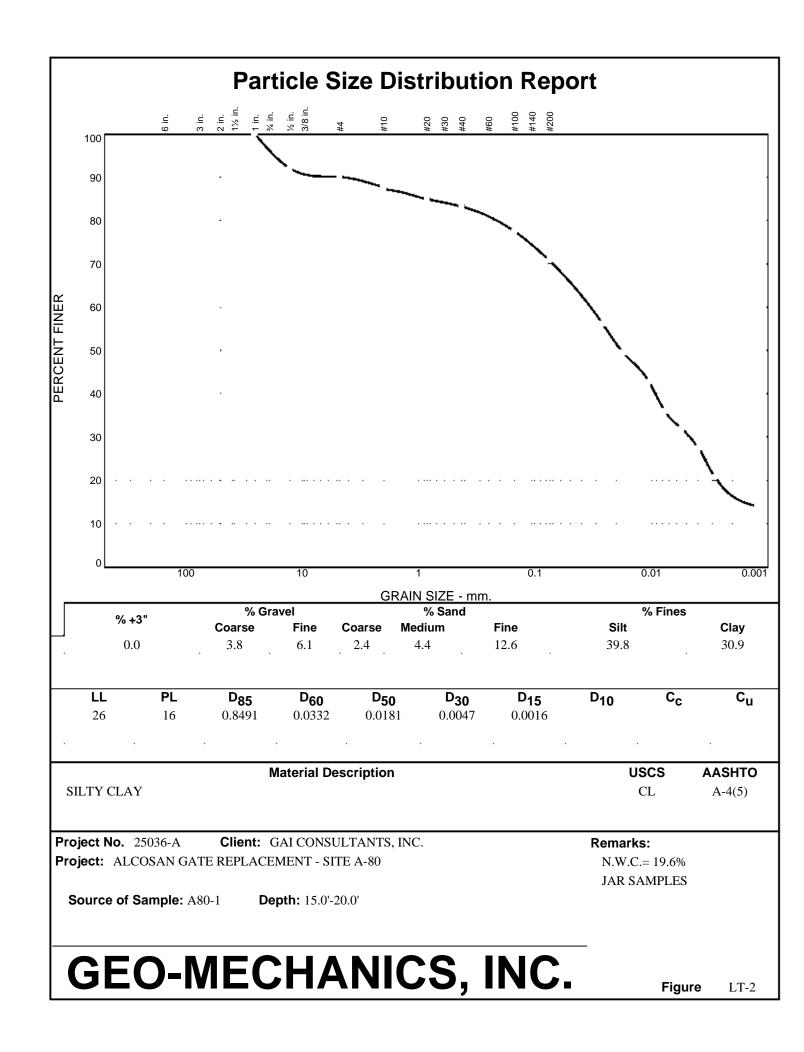
1 2 Miles

ALCOSAN PROJECT S.467 DIVERSION STRUCTURE A-80 1290 OLD FREEPORT ROAD, PITTSBURGH, PA

Source: https://ngmdb.usgs.gov/ngmbin/pdp/zui_viewer.pl?id=46534

GMI Project No. 25036


September 2025


					Surface					
Oriller	Carlos Trevino	<u> </u>	Boring No.	A80-1	Elevation	732.9	Sheet No.	1 of	_1_ she	ets
Orill Rig	CME-55 Trailer-Mo	ount	For GAI Consultants, Inc.							
Vater Level:	O-Hr. <u>16.7</u> 24 Hrs. <u>F</u>	<u>'illedIn</u>	Squa	w Run Pur	np Stati	on				_
Casing Hamm	er: Wt lbs. Drop	in.	Alle	gheny Cou	ınty San	itary Au	thority			
ampler Ham	mer: Wt. 140 lbs. Drop		Location 1	L306 Old	Freeport	Road, C	'Hara T	wp.,	PA	
ampler Size	2 in. O.D. Casing Size	3.25 in. I.D.	Started	7/14/25	Completed	7/14/2	5 Project	No. 2!	5036-A	_
Core Bit Size	N/A	Driller's Log				_ Drill	ing Fluid	N	/A	_
Orientation	Vertical	Geologist's Log		DJB						

Orientat	tion	Vertic	al	Geol	ogist's Lo	g	DJB	21/ 22
ELEVATION	In-situ Tests and Instrumentation	RQD %	RUN-REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)	DESCRIPTION	REMARKS
732.9				1 5 7	1.5	_ °.°	Dark Brown SILTY GRAVEL, Some Sand, Little Clay, Medium Dense, Damp	
729.9				5 3		— 3.0 —	(Fill) Dark Brown CLAYEY GRAVEL, Some Sand and Silt, Loose, Moist	
				4	4.5	_ _	Slag Found in S-3 and S-4	
				3 3 4	7.5	_	.Strong Organic Smell in S-4 .Moderately Plastic	GC
				1		_	(Fill)	
722.4				3	10.5	10.5	Brown SILTY SAND AND GRAVEL, Little Clay, Medium Dense, Wet	
				6 14 11	13.5	_	(Alluvium)	
717.9				5 4 5	16.5	15.0 	Brown SILTY CLAY, Little Sand, Little Gravel, Stiff, Wet	CL
				6		_	(Alluvium)	
712.9				6 6 8 12	20.0			
						<u>-</u>	Bottom of Boring @ 20.0'	

GEO-MECHANICS, INC.

Figure LT-1

E-Mailed October 22, 2025 (E.Wolff@gaiconsultants.com)

GAI Consultants, Inc. 384 East Waterfront Drive Homestead, PA 15120-5005

Attention: Emma N. Wolff, P.E.

Senior Engineering Manager

Re: Allegheny County Sanitary Authority

Professional Services for Gate Replacements

Project S-494

GMI Project No. 25036

Temporary Shoring Parameters at Regulator Structure A-65

Ladies and Gentlemen,

GeoMechanics, Inc. (GMI) is pleased to present the findings for installation of temporary shoring at Allegheny County Sanitation Authority (ALCOSAN) Regulator Structure A-65. This letter summarizes the information obtained during our investigation and presents recommendations for the design of temporary shoring by others for installation of the new structure.

1.0 LOCATION

The structure site is located on the shoreline of the Allegheny River backchannel at Herrs Island, approximately midway between the 31st Street Bridge and the north end of the island, in the City of Pittsburgh, Allegheny County, Pennsylvania (see Figures 1 and 2). It is bounded by the Three Rivers Heritage Trail to the west and the Allegheny River backchannel to the east.

2.0 DATA OBTAINED

The data collection phase of the investigation included drilling of a test boring and laboratory testing of selected samples obtained from the boring. The test boring was originally

E-Mailed October 22, 2025

scheduled to be terminated at a depth of $20\pm$ feet or at refusal on bedrock, whichever was shallower. However, due to the presence of softer/looser soils above a depth of 20 feet, it was agreed to extend the boring to a terminal depth of about $40\pm$ feet or to refusal on bedrock, whichever was shallower.

GMI obtained the test boring, A-65, at the general location shown on Figure 4 on October 1, 2025. The boring was originally to be drilled from the deck of a barge on the back channel. However, due to low water level at the time of access, the barge grounded out and was not able to set up close to the proposed boring location. Therefore, the boring was drilled on land at the location shown on Figure 4.

The boring was advanced in soils to a termination depth of 33.1 feet by hollow-steam augering with standard penetration tests taken at 3-foot center-to-center intervals. The split-spoon samples were delivered to our laboratory where they were logged by an Engineering Geologist. His description of the materials sampled in the boring and the spoon blows from the standard penetration tests are recorded on the attached Test Boring Record.

Laboratory moisture content and classification tests were conducted on two (2) sets of jar samples from the test boring. The results of these tests, when used in conjunction with the standard penetration resistance test results from the test boring, can be related empirically with the shear strength of the soils for use in lateral capacity analyses. The results of the moisture content and classification tests are presented on the attached Figures A65-1 and A65-2.

3.0 DISCUSSION OF SUBSURFACE CONDITIONS

The in-place soils sampled in the boring were from two (2) distinct geologic origins – man-made fill and residual soils. Although located on the Allegheny River flood plain, alluvial soils were not sampled in the test boring.

Man-made fill was present from ground surface down to a depth of 27± feet and consisted of well-graded silty gravel and sand (USCS classification **GW-GM**) to a depth of 12± feet underlain by layers of silty gravel, clayey sand and clayey gravel (USCS classifications gm, **SC** and

E-Mailed October 22, 2025

gc). Note that the bold capital letters for the soils indicate those portions evaluated by laboratory testing. The man-made fill materials were probably placed during construction of the nearby railroad and the Three Rivers Heritage Trail. The in-place relative density of the upper $12\pm$ feet was medium dense ($N_{av}=14$), and that of the lower fill materials was loose ($N_{av}=7$). The moisture content of upper $12\pm$ feet of fill was dry to damp; whereas, that of the lower fill materials was typically wet, being located below the adjacent river level.

Residual soils were present from the base of the man-made fill to the lowest depth sampled. Residual soils are formed through the in-place weathering and decomposition of bedrock. As such, they tend to retain some of the fabric and texture of the parent bedrock from which they have been derived. The thickness of the residual soils was 6.1 feet, and the soils sampled consisted of a layer of clayey sand over a layer of clayey gravel. These appeared to have been derived from an original claystone and/or shale lithology. The in-place relative density of the residuum was very dense, and the moisture content was damp.

4.0 ANALYSIS AND RECOMMENDATIONS

The purpose of the drilling and testing performed at the proposed construction site has been to identify the geotechnical engineering parameters that will be included in the specifications for design of the proposed cofferdam during construction. The results of our analysis and conclusions drawn therefrom are summarized as follows. Note that the values have been adjusted to anticipate construction within the waterway of the Allegheny River backchannel.

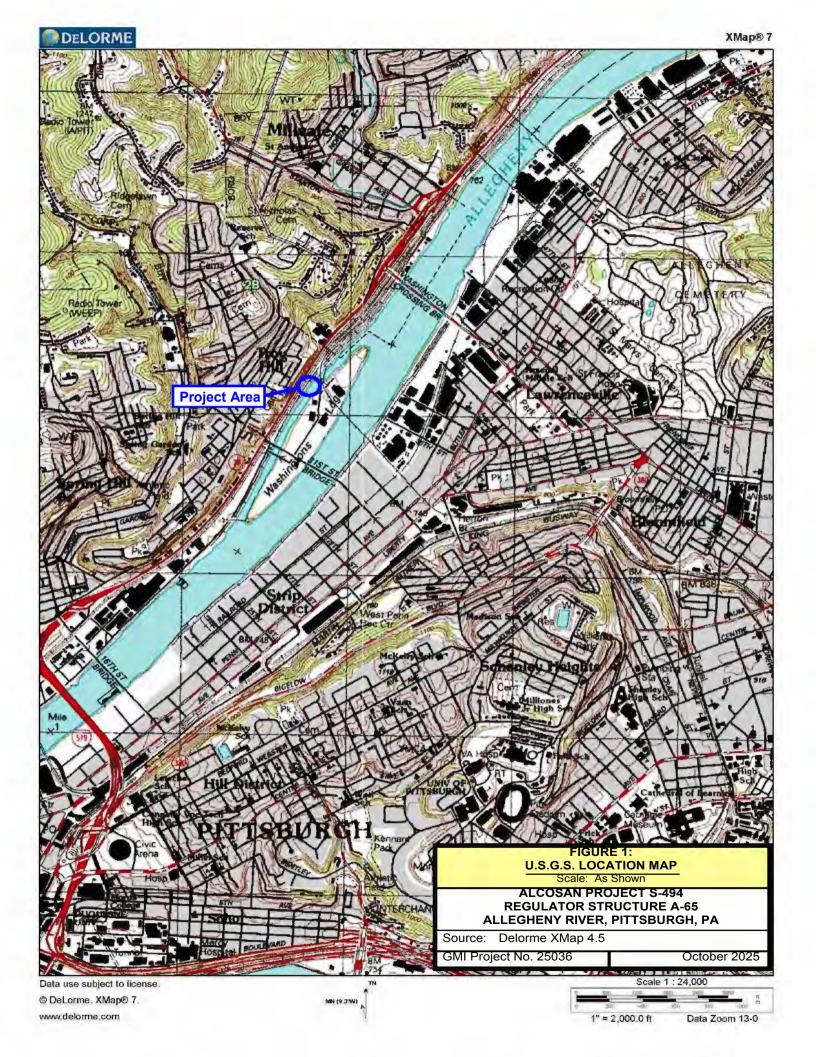
- For non-gravity cantilever walls with continuous vertical wall elements, design the cofferdam using Figure 3.11.5.6-3 from the AASHTO LRFD Bridge Design Specifications, Eighth Edition, 2017.
- For anchored walls constructed from the top down in cohesionless soils, use the appropriate earth pressure distribution presented on Figure 3.11.5.7.1.1 from the AASHTO LRFD Bridge Design Specifications, Eighth Edition, 2017 to design the cofferdam.

E-Mailed October 22, 2025

- Use the following engineering parameters for the in-place soil materials:
 - $\begin{array}{l} \bullet \quad \underline{\text{Lower Man-Made Fill } (12.0'-27.0')} \\ \overline{\text{USCS Classifications: gm, SC, gc}} \\ N_{av} = 7 \\ \phi' = 31° \\ c' = 0 \text{ PSF} \\ \gamma_m = 120 \text{ PCF, } \gamma_{SAT} = 125 \text{ PCF, } \gamma_{SUB} = 62.6 \text{ PCF} \end{array}$
 - $\begin{array}{l} \circ \quad \underline{Residual\ Soils} \\ \overline{USCS\ Classifications:} \quad sc,\ gc \\ N_{av} = 50+ \\ \phi' = 34^{\circ} \\ c' = 0\ PSF \\ \gamma_m = 125\ PCF,\ \gamma_{SAT} = 130\ PCF,\ \gamma_{SUB} = 67.6\ PCF \end{array}$
- Assume the water table to be at or above the 100-year flood elevation along the Allegheny River

We wish to extend our appreciation for this opportunity to be of service to you on this interesting and challenging project. Should you have any questions regarding this letter or require additional information, please contact us.

WALTER M. LORENCE

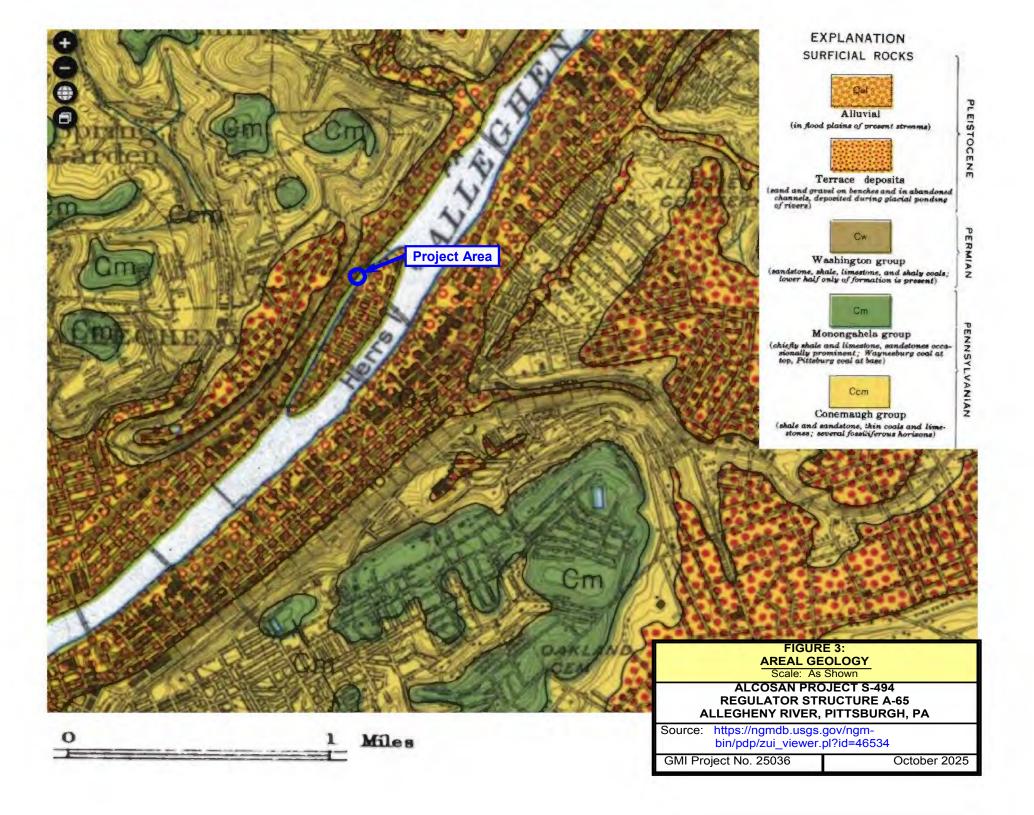

Very truly yours,

GEO-MECHANICS, INC.

Walter M. Lorence, P.E. Executive Vice President

WML:lg

Attachments: Figures 1, 2, 3 and 4 Test Boring Record for A-65 Figures A65-1 and A-65-2



AERIAL PHOTOGRAPH OF SITE Scale: As Shown

ALCOSAN PROJECT S-494 REGULATOR STRUCTURE A-65 ALLEGHENY RIVER, PITTSBURGH, PA

Source: Google Earth. Imagery Date: 7/5/25

GMI Project No. 25036

FIGURE 4: BORING LOCATION Scale: None

ALCOSAN PROJECT S-494 REGULATOR STRUCTURE A-65 ALLEGHENY RIVER, PITTSBURGH, PA

Source: Photograph Provided by GAI Consultants, Inc.

GMI Project No. 25036

TEST BORING RECORD

44									Surface				
Driller _	Ca	arlos	Tre	vino		_	Boring	No. <u>A-65</u>		717.6 Sheet N	lo. <u>1</u> of <u>2</u> sheet		
Drill Rig	g	ME-5!	5 Tra	ailer	:	_	For <u>G</u>	AI Consultan	ts, Inc.				
Water L	evel: O-Hr	8.4	24	Hrs	7.5	_	Pr	coposed Flap	Gate Re	placement			
Casing I	Hammer: Wt.	lbs	. Drop		in.								
Sampler	Hammer: Wt.	140	<u> </u>	. Drop	30	in.	Locatio	n A-65 Regul	ator Str	ructure			
Sampler	Size2	in. O.D	. Casin	g Size	3.25	in. I.D.	Started	10/1/25	Completed _	10/1/25 Pro	oject No. <u>25036</u>		
Core Bit	Size	N/2	A		Dr	iller's Log				Drilling Fluid	iN/A		
Orientat		/erti	cal		Ge	ologist's Log	g	TDW					
ELEVATION	In-Situ Tests and Instrumentation	RQD %	RUN	-REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)	С	ESCRIPTIO) N	REMARKS		
717.6					8 12 12	1.5	- 0.0 -	Brown SILTY Trace Clay, Dense, Damp	, Loose t	-	No Recovery From 0.0-1.5' Sample		
					10 11 6	4.5	_	-	(Fill)		Petroleum Like Odor From		
					4 4 4	7.5	- - -				GW-GM NWC=8.6% LL-NP PI-NP		
					4 3 5	10.5	- - -	-			Hit Water @ 9.0' No Recovery From 9.0-10.5' Sample		
705.6					5 3 2	13.5	12.0 - -	Dark Brown: Some Sand, Loose to Lo	Trace Cl				
					2 1 2	16.5	- -	_	(Fill)		No Recovery From 15.0- 16.5' Sample		
699.6					5		18.0	Dark Browni	ish Gray	CLAYEY SAND,	Petroleum Like		

19.5

22.5

21.0

10

9

3

50/.3 24.3

696.6

Some Gravel, Little Silt, Medium Odor From

(Fill)

Brown to Reddish Brown CLAYEY

Loose to Very Dense, Damp

GRAVEL, Some Sand, Little Silt,

.Gravel Component is Angular in

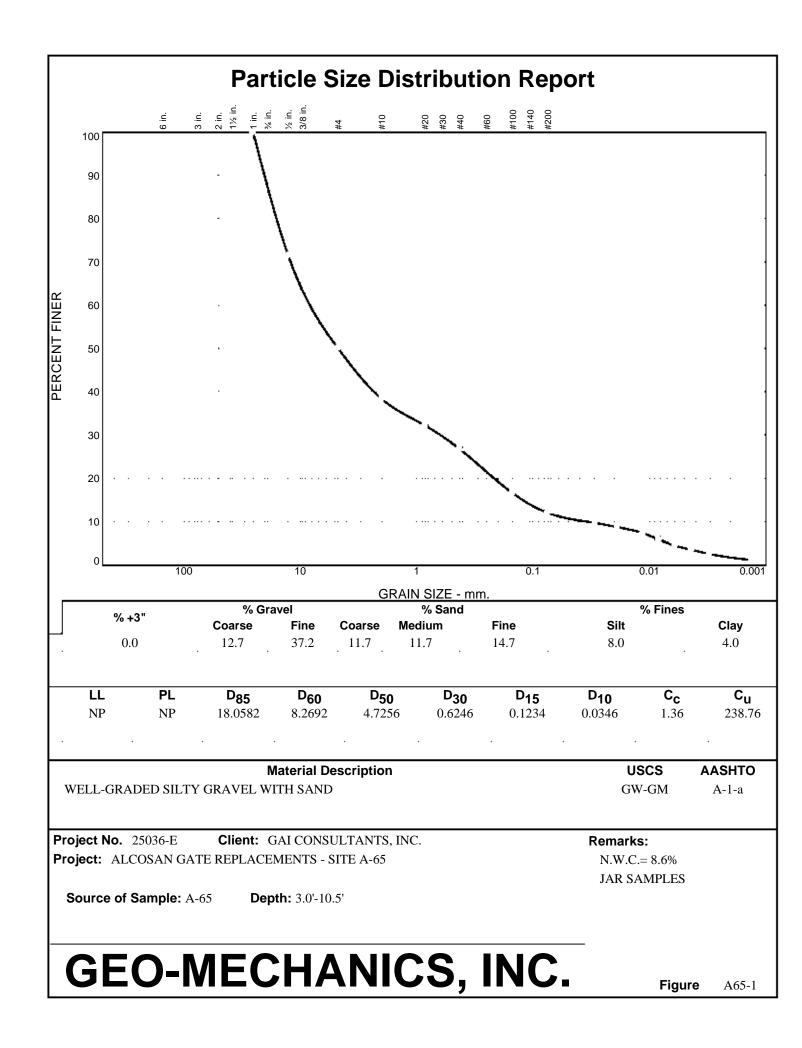
(Fill/Regraded Soil)

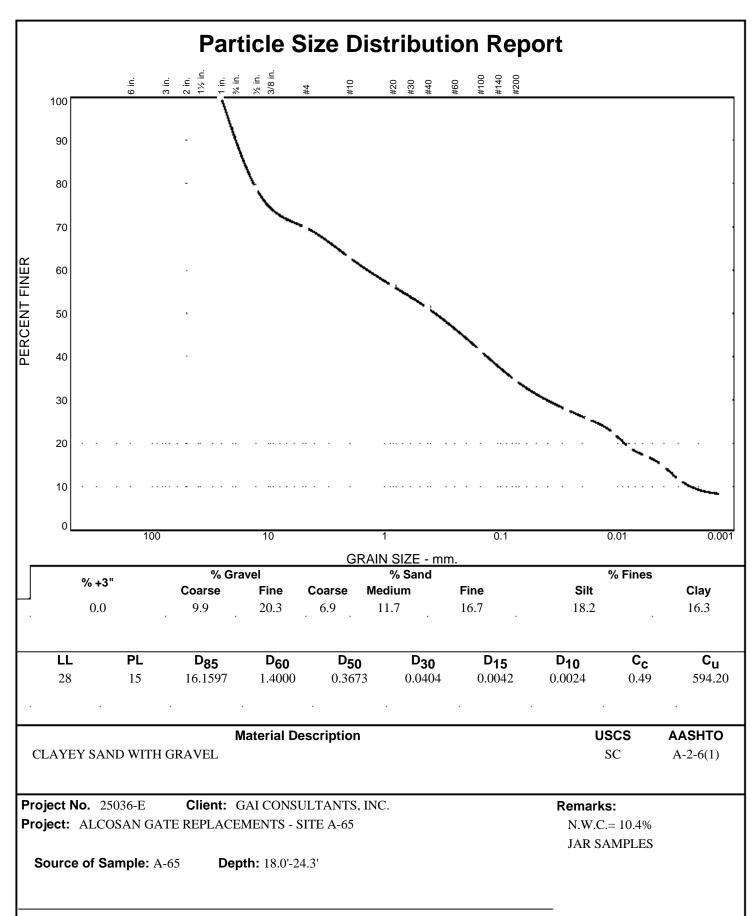
Dense, Wet

Shape

18.0-19.5

NWC=10.4%


LL=28


PI=13

TEST BORING RECORD

-	₽							Ç.,,	rface				
Driller Carlos Trevino							Boring	No. <u>A-65</u> Ele		717.6 Sheet No	o. 2 of 2 sheets		
	g (_		AI Consultants					
	evel: O-Hr.												
	Hammer: Wt.			_									
	Hammer: Wt							on A-65 Regulat			-1		
_	· Size2			_				1 10/1/25 Co			iect No. 25036		
	Size			g Size .		iller's Log		1 _ 10/1/25 _ 0	— —	Drilling Fluid			
	tion					ologist's l		TDW		Drining Fluid	N/A		
		V C1 C1			1	l logist s		IDN					
ELEVATION	In-Situ Tests and Instrumentation	RQD %	RUN-	REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)		CRIPTIO		REMARKS		
								Continued Fro	m Previ	ous Page			
690.6					50/.1	[27.1	27.0	Reddish Brown Silt, Little Damp					
								(Re	esidual)				
687.6					50/.4	30.4	30.0	Red and Gray GRAVEL, Some Very Dense, D	Sand, L				
								(Re (Decomposed	esidual) l Clayst				
684.5		<u> </u>			50/.1	33.1	33.1	Dottom o	f Domin	g @ 33.1'			

GEO-MECHANICS, INC.

Figure A65-2

E-Mailed October 22, 2025 (E.Wolff@gaiconsultants.com)

GAI Consultants, Inc. 384 East Waterfront Drive Homestead, PA 15120-5005

Attention: Emma N. Wolff, P.E.

Senior Engineering Manager

Re: Allegheny County Sanitary Authority

Professional Services for Gate Replacements

Project S-494

GMI Project No. 25036

Temporary Shoring Parameters at Diversion Structure M-34

Ladies and Gentlemen,

GeoMechanics, Inc. (GMI) is pleased to present the findings for installation of temporary shoring at Allegheny County Sanitation Authority (ALCOSAN) Diversion Structure M-34. This letter summarizes the information obtained during our investigation and presents recommendations for the design of temporary shoring by others for installation of the new structure.

1.0 LOCATION

The structure site is located on the shoreline of the Monongahela River approximately 275± feet downstream from the mouth of Becks Run at the Monongahela River in the City of Pittsburgh, Pennsylvania (see Figures 1 and 2). It is bounded by the Three Rivers Heritage Trail to the west and the Monongahela River to the east.

2.0 DATA OBTAINED

The data collection phase of the investigation included drilling of a test boring and laboratory testing of selected samples obtained from the boring. The test boring was originally

E-Mailed October 22, 2025

scheduled to be terminated at a depth of $20\pm$ feet or at refusal on bedrock, whichever was shallower. However, due to the presence of softer/looser soils above a depth of 20 feet, it was agreed to extend the boring to a terminal depth of about $40\pm$ feet.

GMI obtained the test boring, M-34, at the general location shown on Figure 4 on September 23, 2025. The boring was drilled from the deck of a barge on the Monongahela River using in-house personnel and equipment. Water depth at the time and date of drilling was 2.8 feet. The boring was advanced in soils to the termination depth of 40.5 feet by hollow-steam augering with standard penetration test taken at 3-foot center-to-center intervals. The split-spoon samples were delivered to our laboratory where they were logged by an Engineering Geologist. His description of the materials sampled in the boring and the spoon blows from the standard penetration tests are recorded on the attached Test Boring Record.

Laboratory moisture content and classification tests were conducted on three (3) sets of jar samples from the test boring. The results of these tests, when used in conjunction with the standard penetration resistance test results from the test boring, can be related empirically with the shear strength of the soils for use in lateral capacity analyses. The results of the moisture content and classification tests are presented on the attached Figures M34-1 through M34-3.

3.0 DISCUSSION OF SUBSURFACE CONDITIONS

All in-place soils sampled in the boring were from the same distinct geologic origin - alluvial deposits that were present from streambed down to the lowest depth sampled of 40.5 feet (see Figure 3). Alluvial soils are those that are transported by the stream action of Becks Run and the Monongahela River and deposited at the site during periods of overbank flow. The alluvium at the proposed construction site consisted of an upper $9\pm$ -foot thick layer of silt (USCS classification ML) and underlain by $3\pm$ feet of silty clay. Below a depth of $12\pm$ feet the alluvium consisted primarily of silty to clayey gravel and sand (USCS classifications GC and SC). The consistency of the upper fine alluvium was very soft ($N_{av} = 1$). The relative density of the granular alluvium varied from loose to

E-Mailed October 22, 2025

very dense and averaged medium dense ($N_{av} = 16$). The moisture content of the alluvium was typically wet throughout.

4.0 ANALYSIS AND CONCLUSIONS

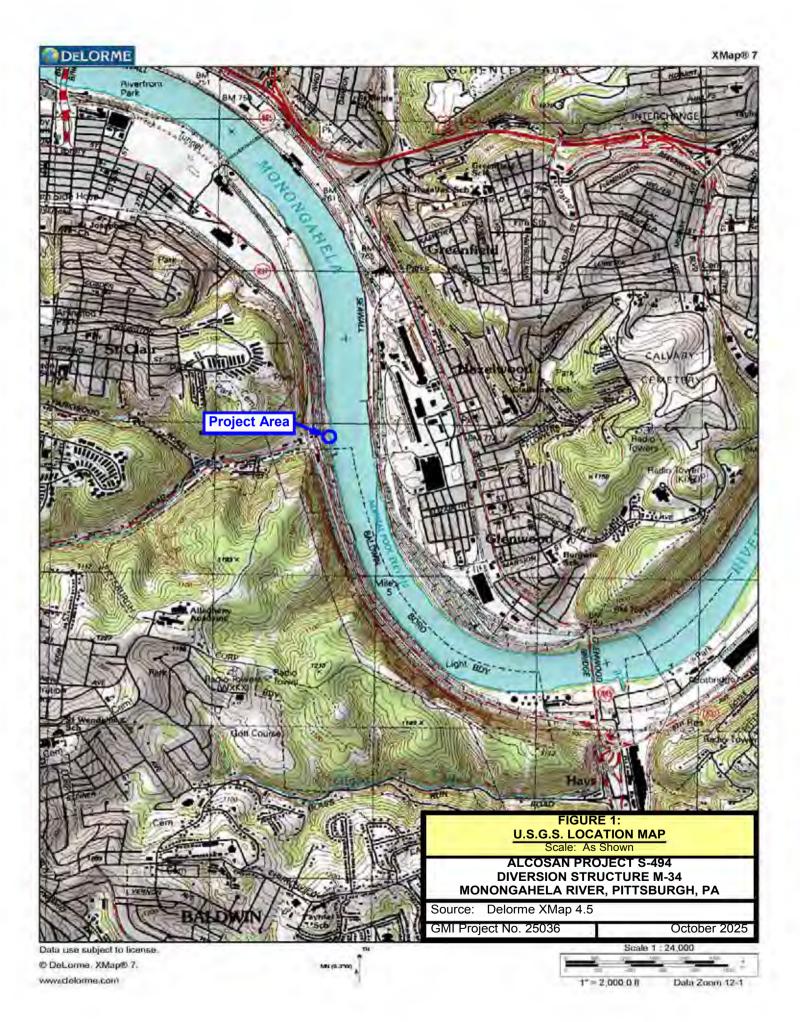
The purpose of the drilling and testing performed at the proposed construction site has been to identify the geotechnical engineering parameters that will be included in the specifications for design of the proposed cofferdam during construction. The results of our analysis and conclusions drawn therefrom are summarized as follows:

- For non-gravity cantilever walls with continuous vertical wall elements, design the cofferdam using Figure 3.11.5.6-3 from the AASHTO LRFD Bridge Design Specifications, Eighth Edition, 2017.
- For anchored walls constructed from the top down in cohesionless soils, use the appropriate earth pressure distribution presented on Figure 3.11.5.7.1.1 from the AASHTO LRFD Bridge Design Specifications, Eighth Edition, 2017 to design the cofferdam.
- Use the following engineering parameters for the in-place soil materials:
 - $\begin{array}{l} \circ \quad & \underline{Alluvial\ Soils-Cohesive} \\ \hline USCS\ Classification: \quad & ML,\ cl \\ N_{av}=1 \\ \phi'=20^{\circ} \\ c'=0\ PSF \\ \gamma_{m}=90\ PCF,\ \gamma_{SAT}=100\ PCF,\ \gamma_{SUB}=37.6\ PCF \end{array}$
 - $\begin{array}{l} \circ \quad & \underline{Alluvial\ Soils-Granular} \\ \hline USCS\ Classifications: \ GC,\ SC \\ N_{av} = 16 \\ \phi' = 31^{\circ} \\ c' = 0\ PSF \\ \gamma_m = 120\ PCF,\ \gamma_{SAT} = 125\ PCF,\ \gamma_{SUB} = 62.6\ PCF \end{array}$

E-Mailed October 22, 2025

• Assume the water table to be at or above the 100-year flood elevation along the Monongahela River

We wish to extend our appreciation for this opportunity to be of service to you on this interesting and challenging project. Should you have any questions regarding this letter or require additional information, please contact us.

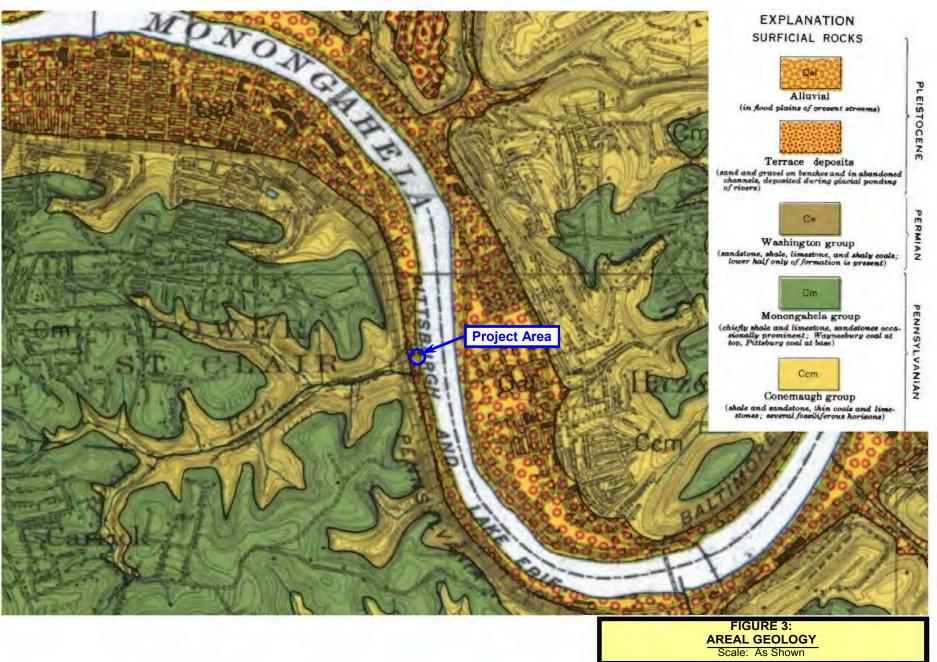

Very truly yours,

GEO-MECHANICS, INC.

Walter M. Lorence, P.E. Executive Vice President

WML:lg Attachments: Figures 1, 2, 3 and 4 Test Boring Record for M-34 Figures M34-1, M34-2 and M34-3

Z:\2025 Jobs\25036 - Alcosan Gate Replacements\M-34\Alcosan M-34 Letter Report (25036).docx


FIGURE 2: AERIAL PHOTOGRAPH OF SITE

Scale: As Shown

ALCOSAN PROJECT S-494 DIVERSION STRUCTURE M-34 MONONGAHELA RIVER, PITTSBURGH, PA

Source: Google Earth. Imagery Date: 3/17/25

GMI Project No. 25036

O 1 2 Miles

ALCOSAN PROJECT S-494 DIVERSION STRUCTURE M-34 MONONGAHELA RIVER, PITTSBURGH, PA

Source: https://ngmdb.usgs.gov/ngmbin/pdp/zui_viewer.pl?id=46534

GMI Project No. 25036

FIGURE 2: TEST BORING LOCATION PLAN

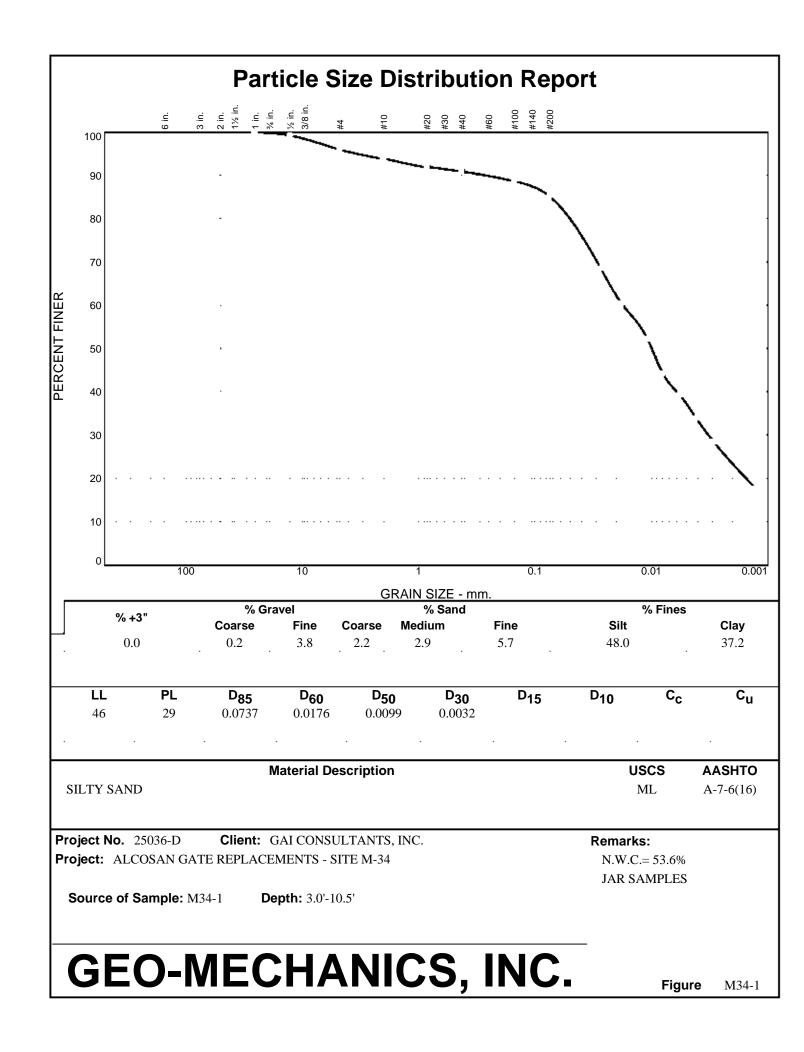
Scale: As Shown

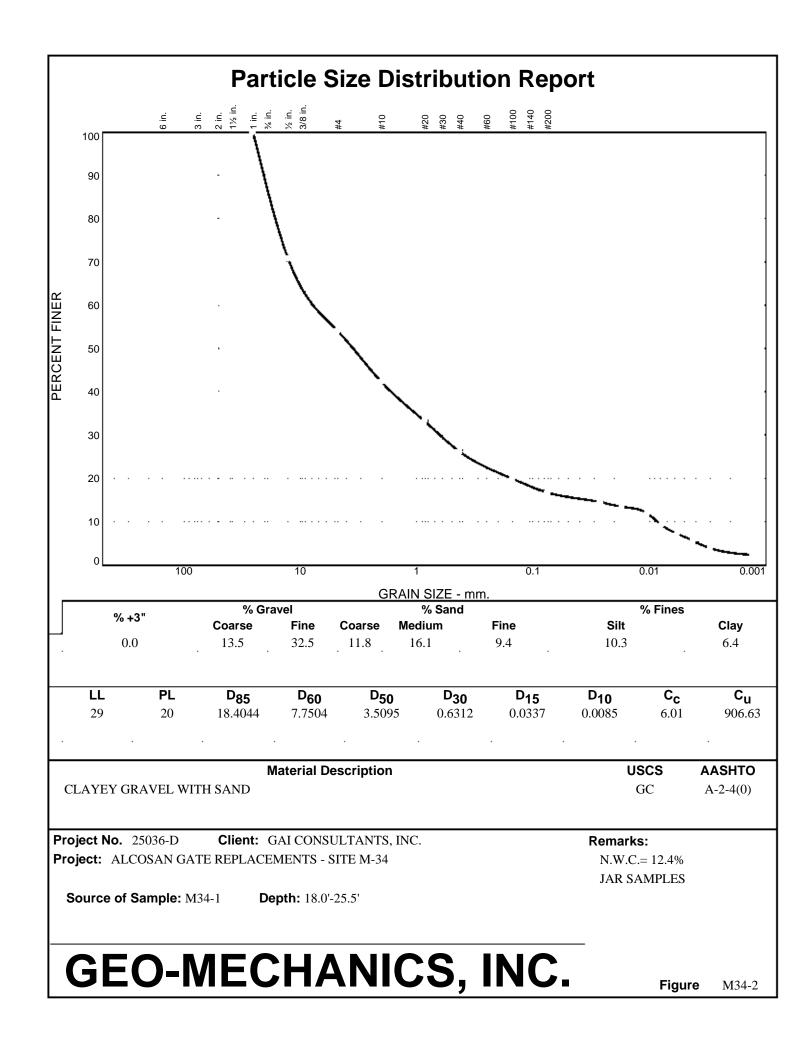
ALCOSAN PROJECT S-494 DIVERSION STRUCTURE M-34 MONONGAHELA RIVER, PITTSBURGH, PA

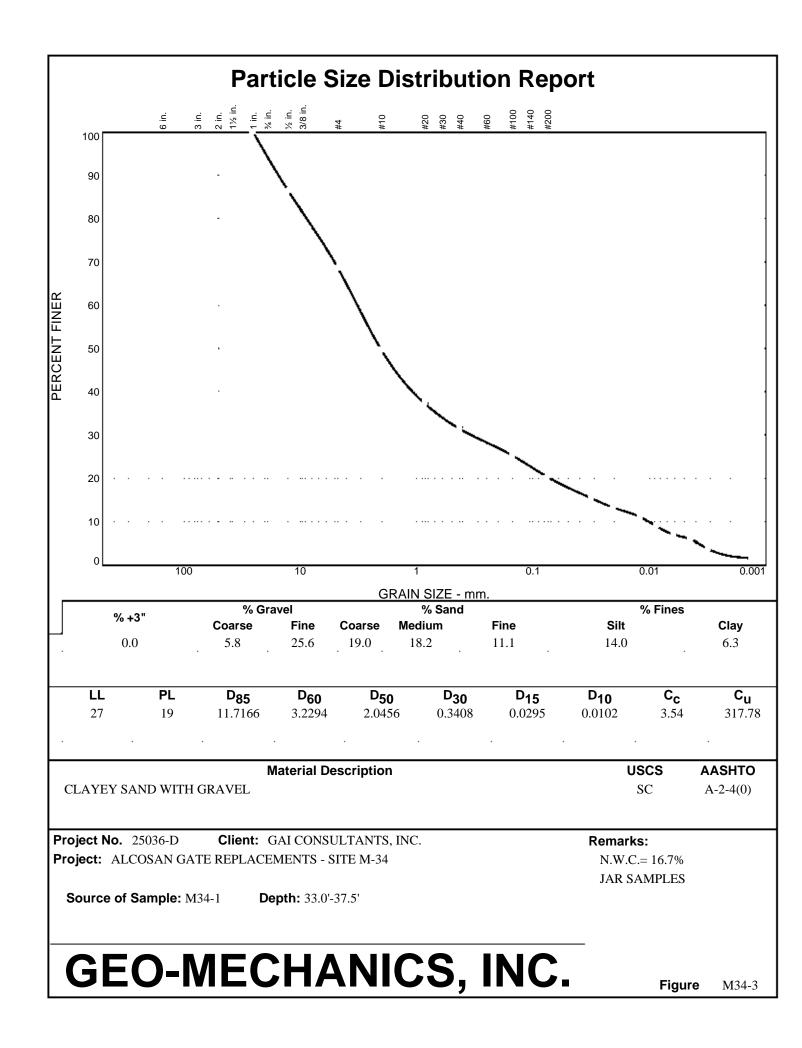
Source: Google Earth. Imagery Date: 3/17/25

GMI Project No. 25036

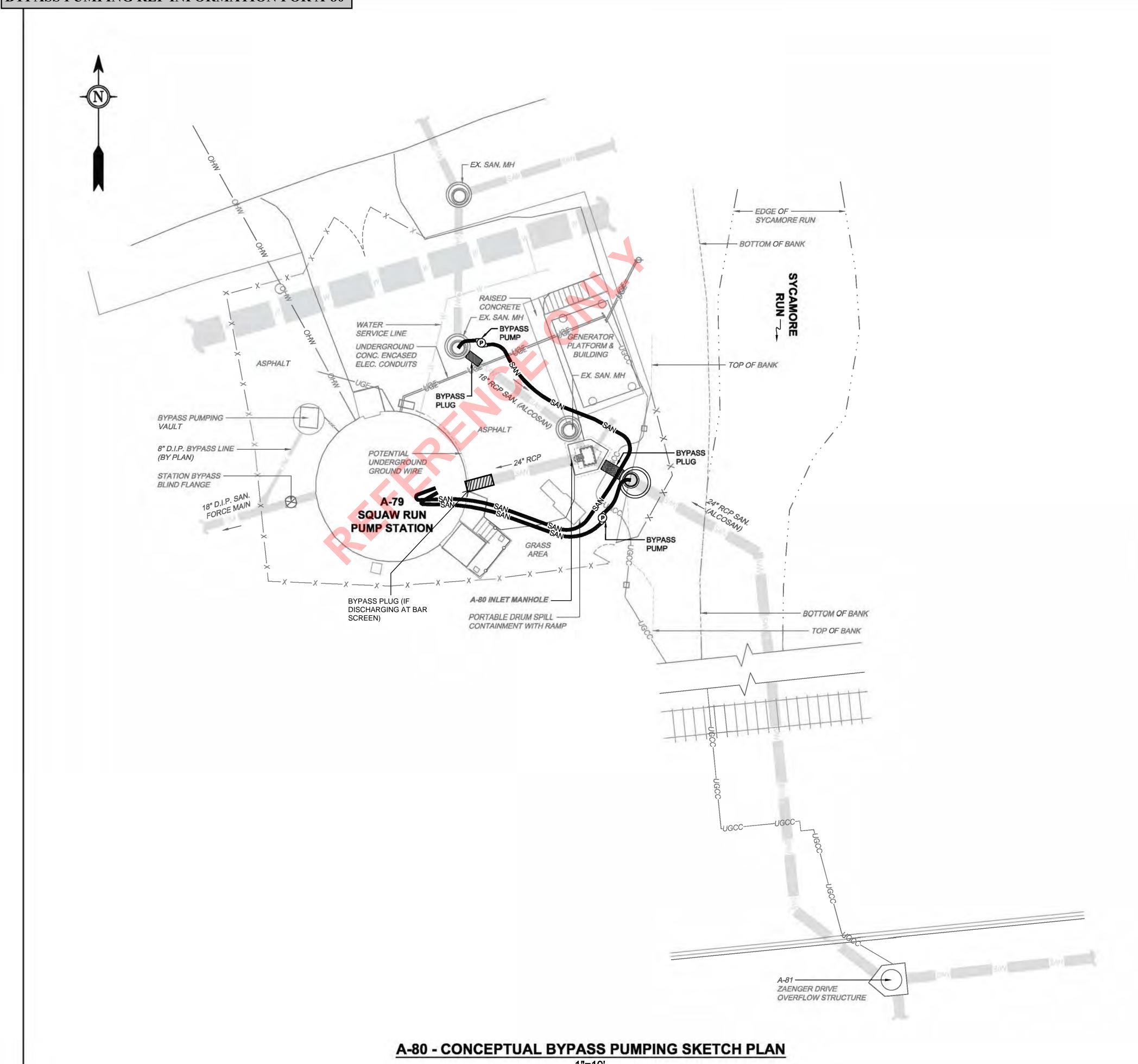
TEST BORING RECORD

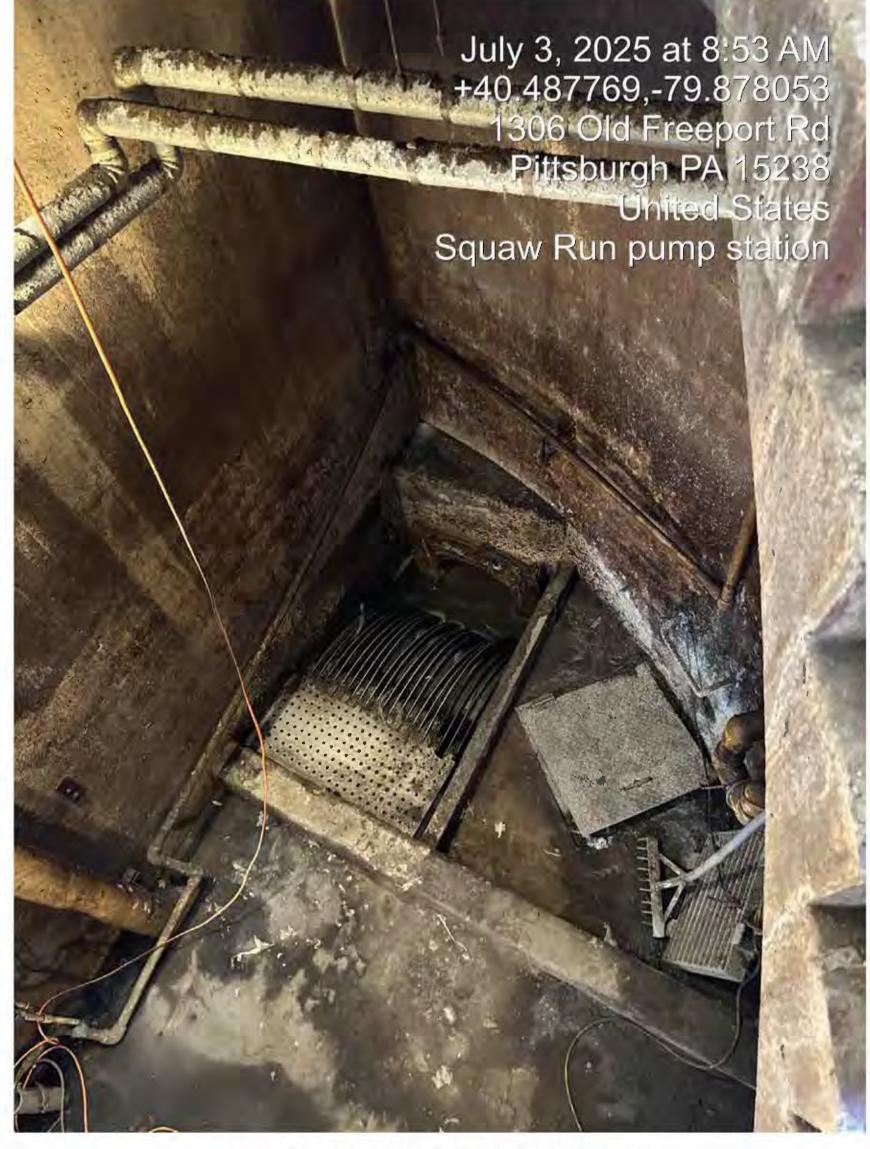

Surface

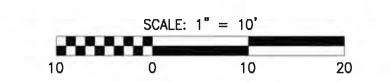

Driller .	<u>C</u>	arlos	Trev	no		-	Boring N	No. M-34 Elevation Sheet No	$\frac{1}{2}$ of $\frac{2}{2}$ sheet			
Drill Rig	g	CME-55	Tra	iler		_	For GA	Consultants, Inc.				
Water Level: O-Hr 24 Hrs Proposed Flap Gate Replacement												
Casing I	Hammer: Wt.		_ lbs. l	Drop _	i	n.	Allegheny County Sanitary Authority					
Sampler	Hammer: Wt	140	_ lbs. l	Drop _	30_ i							
Sampler	Size2	in. O.D.	Casing	Size _	_4 i	n. I.D.	Started	9/23/25 Completed 9/23/25 Project	ect No. 25036			
Core Bit	t Size	N/A	_		Drille	er's Log		Drilling Fluid	N/A			
Orientat	tion	Vertic	al		Geole	ogist's Lo	g	RPB/TDW				
ELEVATION	In-situ Tests and Instrumentation	RQD %		-REC.	SPOON BLOWS INTERV.	BOTTOM DEPTH OF SAMPLE	DEPTH (Ft.)	DESCRIPTION	REMARKS			
0					1	-	0.0	Dark Gray to Black SILT, Some	Boring			
					1 WOH	1.5		Fine Sand, Little Clay, Trace Gravel, Very Soft, Wet	Drilled on Water. Water Depth = 2.8'			
								.Sandy Laminations and Lenses				
					2 1		_					
					0	4.5	_	(Alluvial)				
					1				ML NWC=53.6%			
					1 1	7.5			LL=46			
									PI=17			
-9							9.0					
					2 1			Dark Gray SILTY CLAY, Little Sand, Very Soft, Wet				
					1	10.5	\vdash	(Alluvial)				
-12							12.0					
					4 3		_	Dark Brownish Gray SILTY TO CLAYEY GRAVEL AND SAND, Loose to				
					4	13.5		Very Dense, Wet				
					5			-				
					5 5	16.5						
								(Alluvial)				
					4							
					8							
					7	19.5	\vdash					
							_					
					6 17		L		GC NWC=12.4%			
					21	22.5	\vdash		LL=29 PI=9			
									1 1 - 7			
					6 8		\vdash					

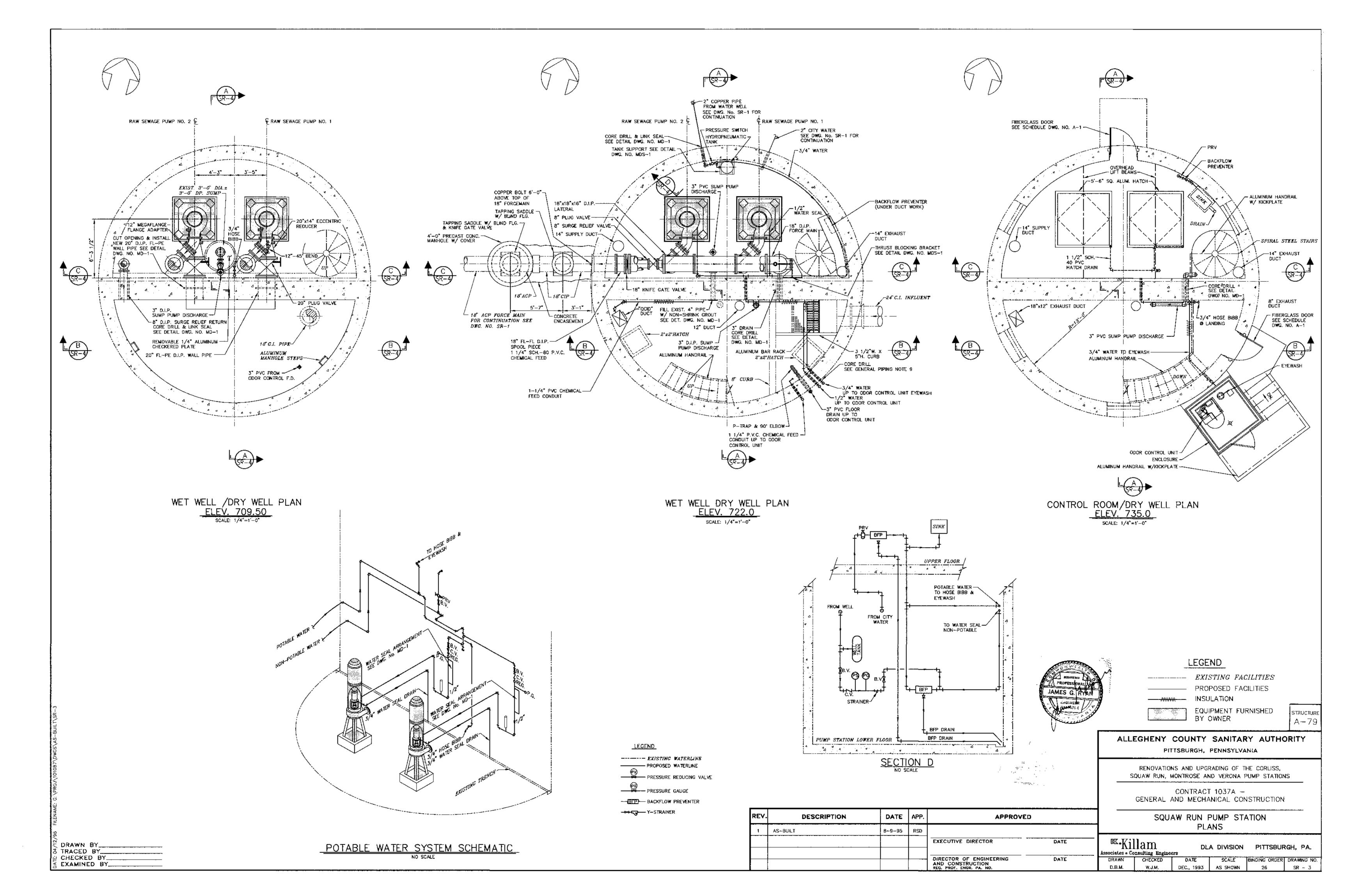


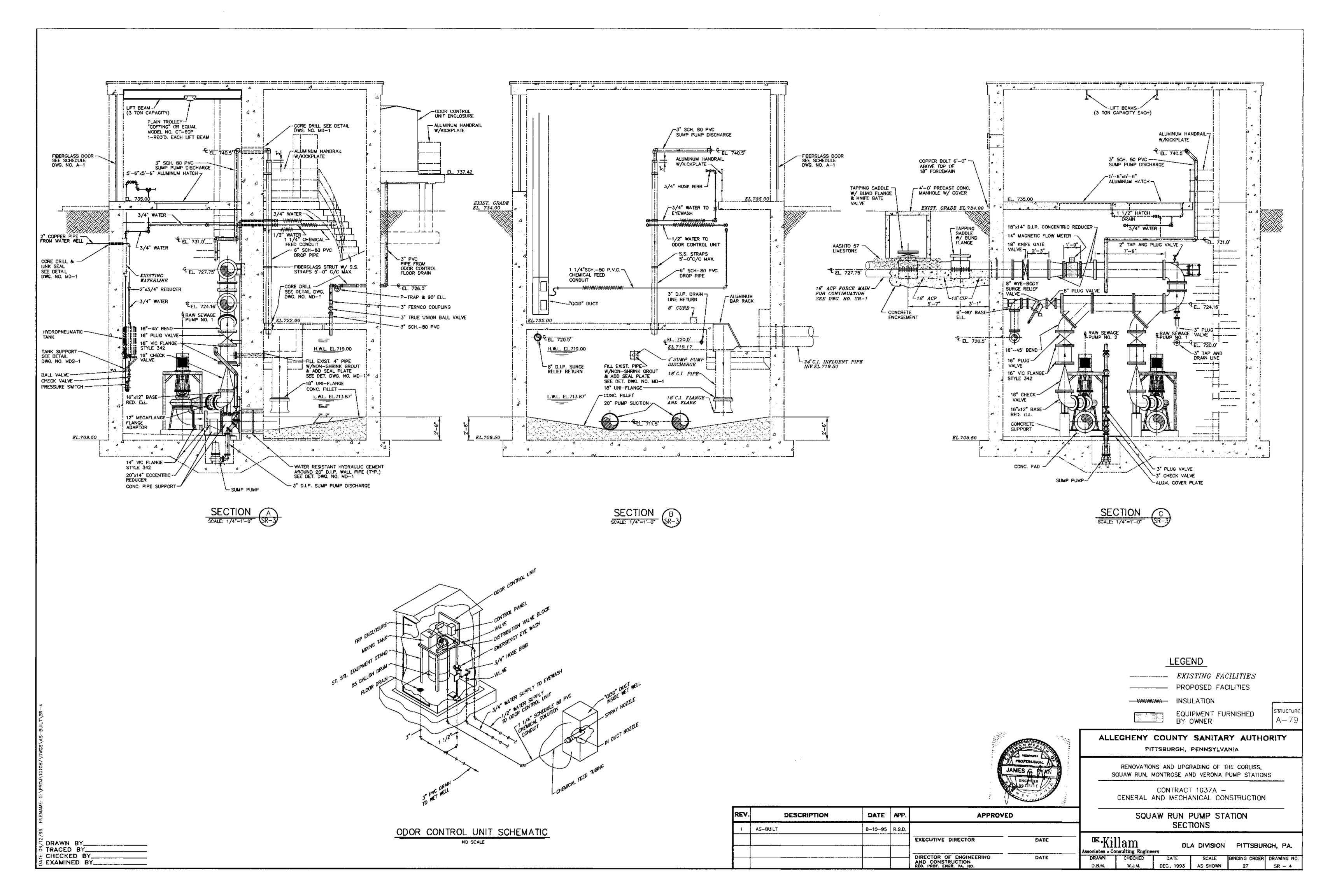
TEST BORING RECORD

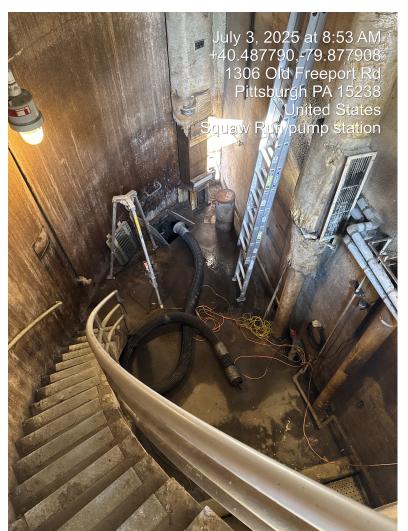

	-40.5	ü		ON In-situ ON Tests and UN Tests ATTION THE TEST TEST TEST TEST TEST TEST TEST	Carlos Trevino
	7 8 6	50/.2 6 3	7 7 6 8	RUN-REC. SPOON BLOWS),
Bottom of Boring @ 40.5'	36.0 Brownish Gray CLAYEY GRAVEL, Some Sand, Little Silt, Medium Dense, Wet (Alluvial) 39.0 Brownish Gray CLAYEY SAND, Little Silt, Trace Gravel, Medium Dense, Wet	.Possible Cobble @ 31.0' 33.0 Brown CLAYEY SAND, Little Silt, Little Gravel, Medium Dense, Wet	25.5 Continued From Previous Page	DEPTH (Ft)	Surface Boring No. M-34 Elevation For GAI Consultants, Inc. Proposed Flap Gate Replacement
	,	vet NWC=16.7% PI=8		REMARKS	Sheet No. 2 of 2 sheet at thority 5 Project No. 25036 ing Fluid N/A



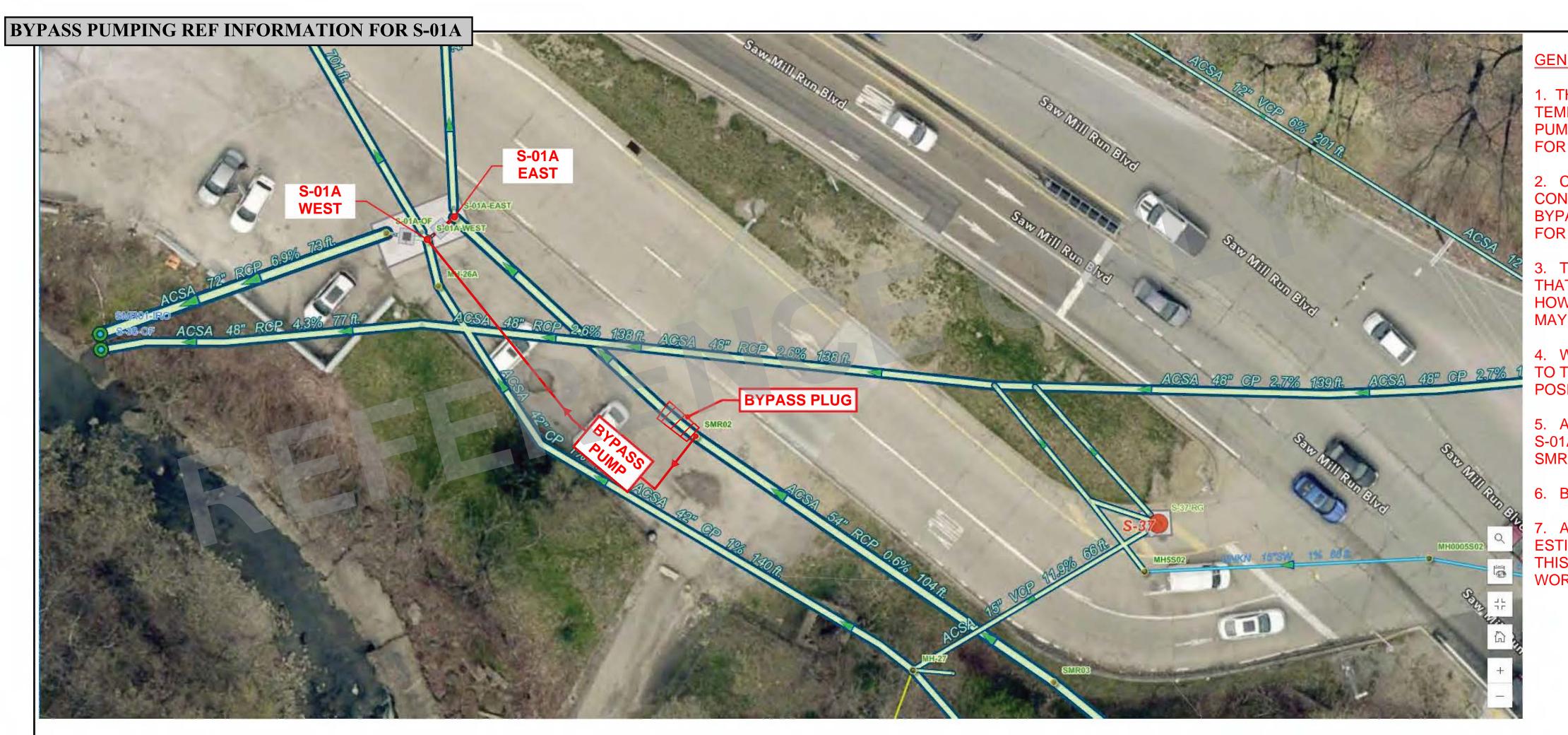


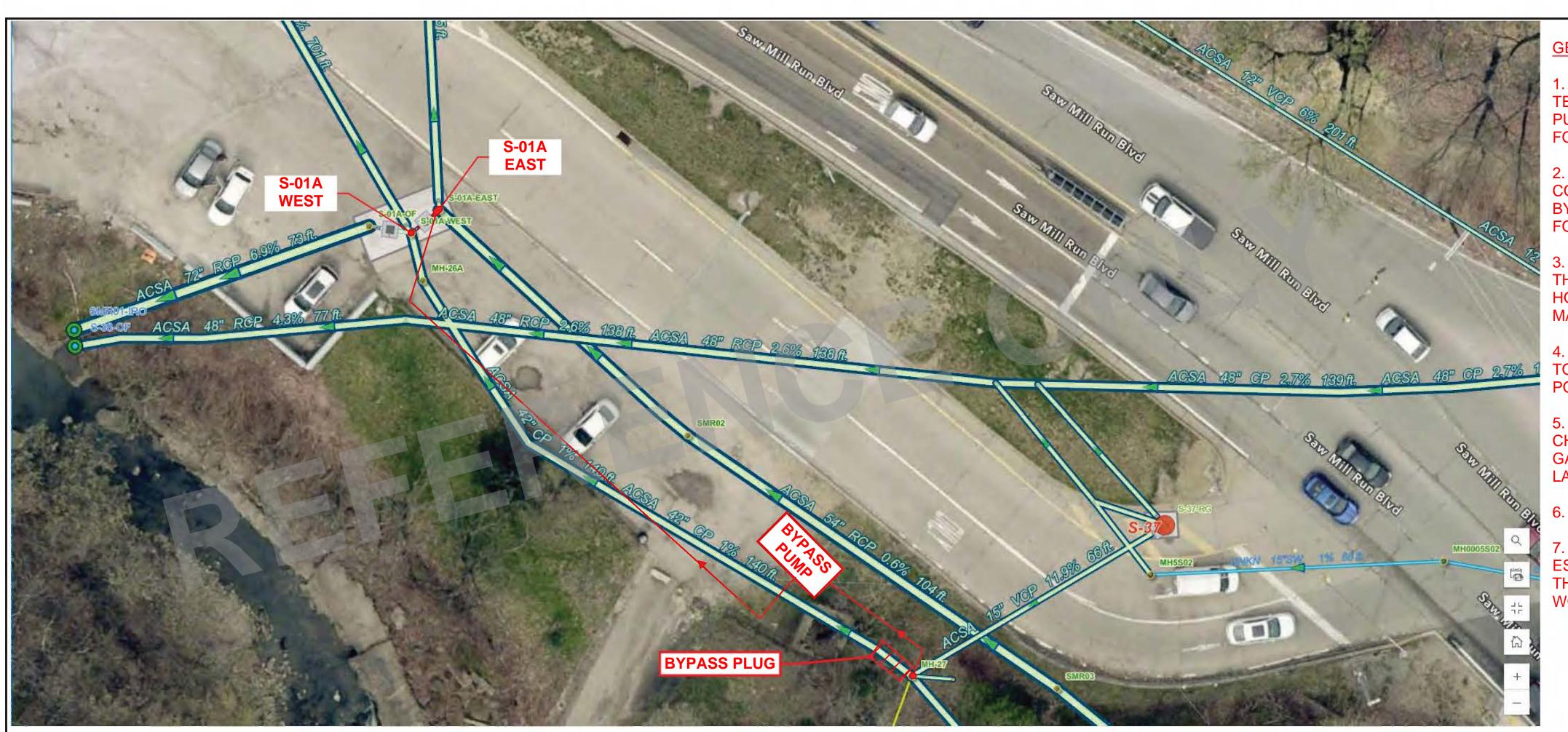



BYPASS PUMP DISCHARGE TO
EXISTING PUMP STATION INFLUENT BAR RACK


SPECIAL REQUIREMENTS:

- THE CONTRACTOR IS RESPONSIBLE FOR DESIGNING, PROVIDING, AND MAINTAINING TEMPORARY FACILITIES TO DEWATER THE AREA OF WORK AND PROVIDE PUMPS, BACKUP PUMPS, BULKHEADS, COFFERDAMS, MATERIALS AND EQUIPMENT AS NECESSARY TO PROVIDE FOR A DRY INSTALLATION.
- 2. CONTRACTOR IS RESPONSIBLE FOR MAINTAINING FORWARD FLOW THROUGH THE CONTRACT WORK ZONE AT ALL TIMES. MAINTENANCE OF FLOW AND/OR PA PE STAMPED BYPASS PLANS SHALL BE SUBMITTED BY THE CONTRACTOR AND APPROVED BY THE OWNER FOR ALL STRUCTURES PRIOR TO BEGINNING ANY CONTRACT CONSTRUCTION.
- 3. FLOW DATA PROVIDED IS FOR THE TOTAL COMBINED FLOW AT THE A-79 SQUAW RUN PUMP STATION AND IS INTENDED FOR INFORMATIONAL USE BY BIDDERS IN ESTIMATING BYPASS PUMPING NEEDS. IMPORTANT: THE CONTRACTOR IS REQUIRED TO BYPASS PUMP FROM TWO SEPARATE MANHOLES, EACH OF WHICH CONVEYS ONLY A PORTION OF THE TOTAL COMBINED FLOW. IT IS THE CONTRACTOR'S RESPONSIBILITY TO ACCOUNT FOR THIS DISTRIBUTION WHEN DESIGNING AND IMPLEMENTING THE BYPASS PUMPING SYSTEM. IT IS THE RESPONSIBILITY OF BIDDERS TO EVALUATE THIS INFORMATION AGAINST ACTUAL FIELD CONDITIONS AND PERFORM ANY INVESTIGATIVE WORK NECESSARY TO SATISFY THE ITEMS SUBMITTED IN THEIR BIDS.
- 4. THE CONTRACTOR MAY ROUTE BYPASS PUMPING HOSES THROUGH THE OPEN PUMP STATION WET WELL DOOR IF THE PUMP STATION GATE IS KEPT LOCKED SECURE AND THE SITE REMAINS STAFFED. IF THE SITE IS NOT STAFFED 24 HOURS PER DAY, THEN THE CONTRACTOR SHALL ROUTE BYPASS PUMPING HOSES THROUGH ONE OF THE SEALED WINDOWS IF DISCHARGING INTO THE PUMP STATION WET WELL. CONTRACTOR SHALL INSPECT THE BYPASS PUMPING SYSTEM EVERY 30 MINUTES TO ENSURE THAT THE SYSTEM IS OPERATING CORRECTLY.

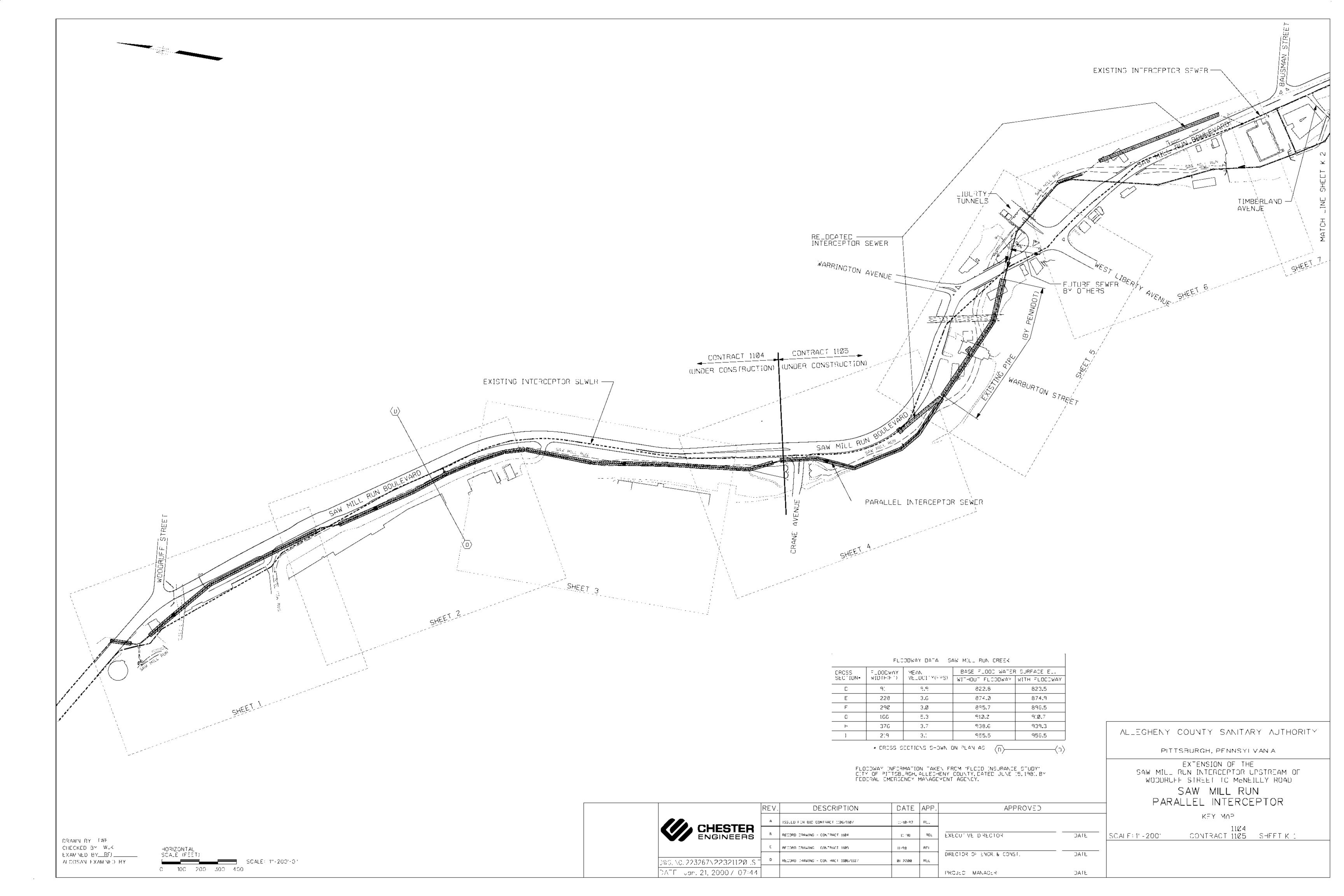


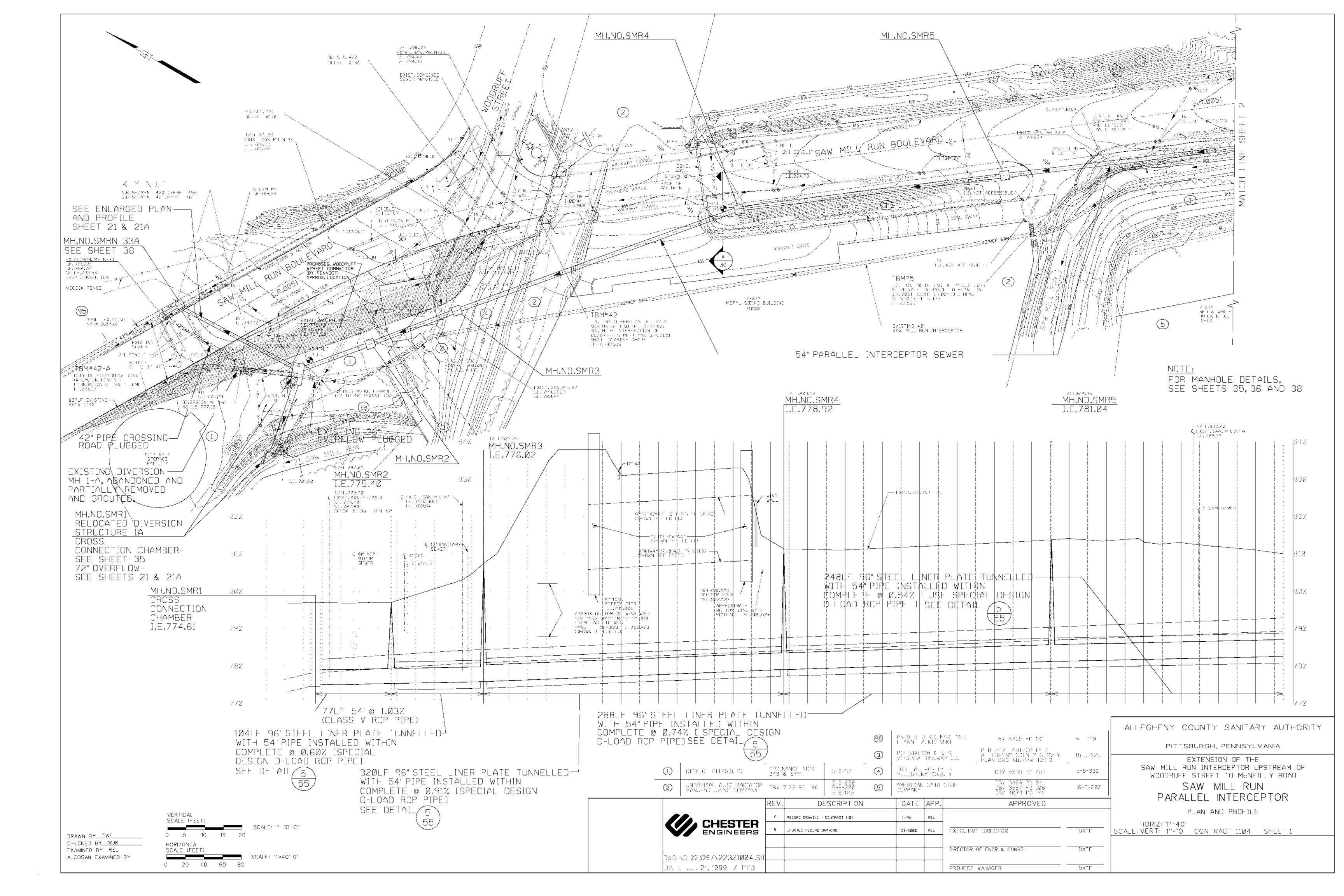


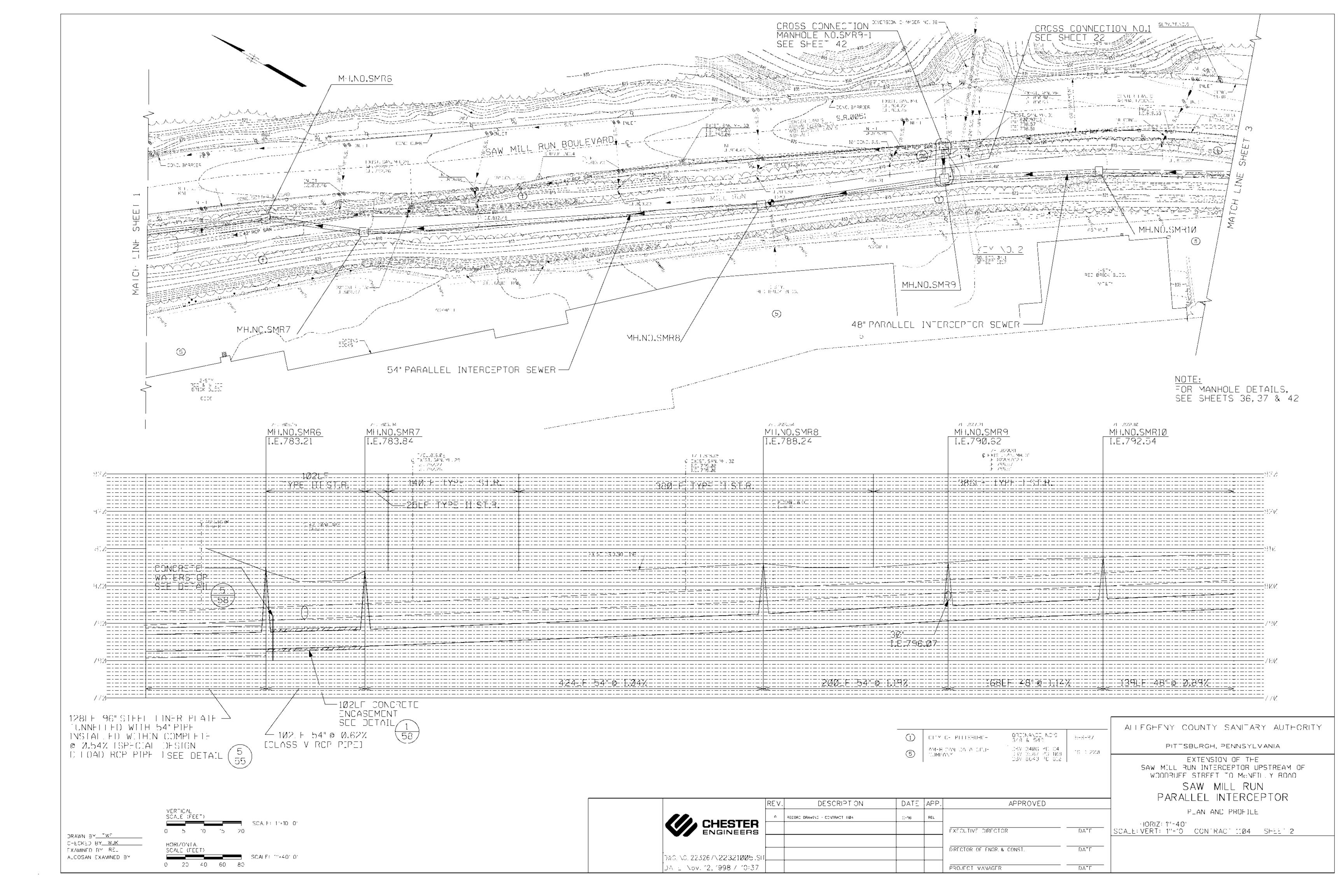
GENERAL NOTES

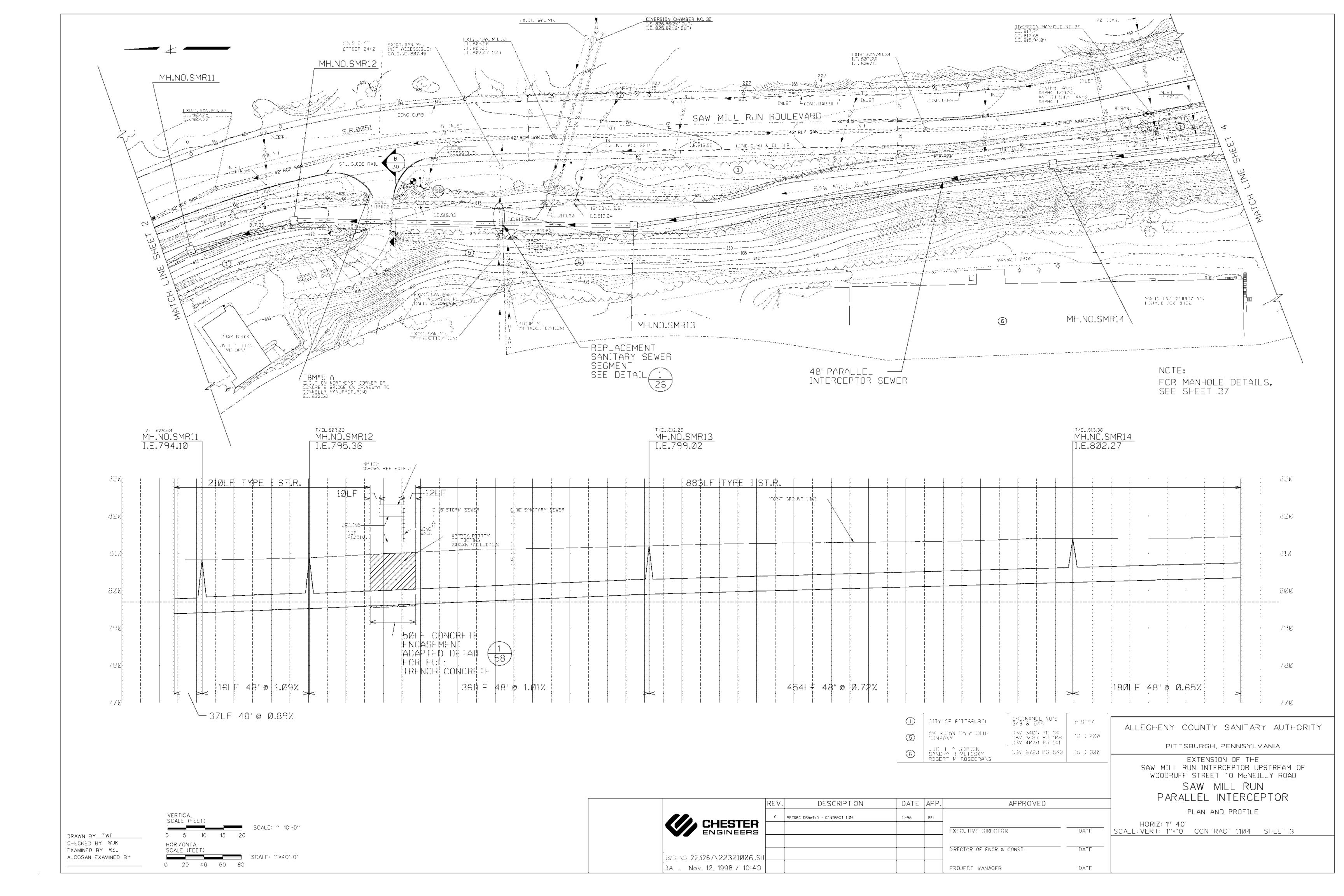
- 1. THE CONTRACTOR IS RESPONSIBLE FOR DESIGNING, PROVIDING, AND MAINTAINING TEMPORARY FACILITIES TO DEWATER THE AREA OF WORK AND PROVIDE PUMPS, BACKUP PUMPS, BULKHEADS, COFFERDAMS, MATERIALS AND EQUIPMENT AS NECESSARY TO PROVIDE FOR A DRY INSTALLATION.
- 2. CONTRACTOR IS RESPONSIBLE FOR MAINTAINING FORWARD FLOW THROUGH THE CONTRACT WORK ZONE AT ALL TIMES. MAINTENANCE OF FLOW AND/OR PA PE STAMPED BYPASS PLANS SHALL BE SUBMITTED BY THE CONTRACTOR AND APPROVED BY THE OWNER FOR ALL STRUCTURES PRIOR TO BEGINNING ANY CONTRACT CONSTRUCTION.
- 3. THE PARALLEL INTERCEPTOR HAS FLOW DIVERSION STRUCTURES AT SELECT LOCATIONS THAT CAN BE USED TO REDUCE THE AMOUNT OF FLOW THAT HAS TO BE BYPASS-PUMPED. HOWEVER, THESE FLOW DIVERSIONS MAY NOT PROVIDE TOTAL BYPASS OF FLOWS AND USE MAY BE RESTRICTED DUE TO WEATHER, FLOWS OR MAINTENANCE.
- 4. WHEN BYPASSING THE EAST CHAMBER, INTERCEPTOR FLOWS CAN MOSTLY BE DIVERTED TO THE PARALLEL INTERCEPTOR BY OPERATING SMR20-SOUTH SLUICE GATE TO THE CLOSED POSITION.
- 5. A BYPASS PLUG AND PUMP CAN BE SET AT MANHOLE SMR02, IMMEDIATELY UPSTREAM OF S-01A EAST CHAMBER, TO CATCH AND DIVERT ANY FLOWS LEAKING THROUGH THE SMR20-SOUTH SLUICE GATE OR INFLOW/INFILTRATION INTO THE INTERCEPTOR.
- 6. BYPASS PUMPING CAN ONLY OCCUR DURING DRY WEATHER CONDITIONS.
- 7. ANY REPRESENTATIVE FLOW DATA IS PROVIDED FOR INFORMATIONAL USE BY BIDDERS IN ESTIMATING BYPASS PUMPING NEEDS. IT IS THE RESPONSIBILITY OF BIDDERS TO EVALUATE THIS INFORMATION AGAINST ACTUAL FIELD CONDITIONS AND PERFORM ANY INVESTIGATIVE WORK NECESSARY TO SATISFY THE ITEMS SUBMITTED IN THEIR BIDS.

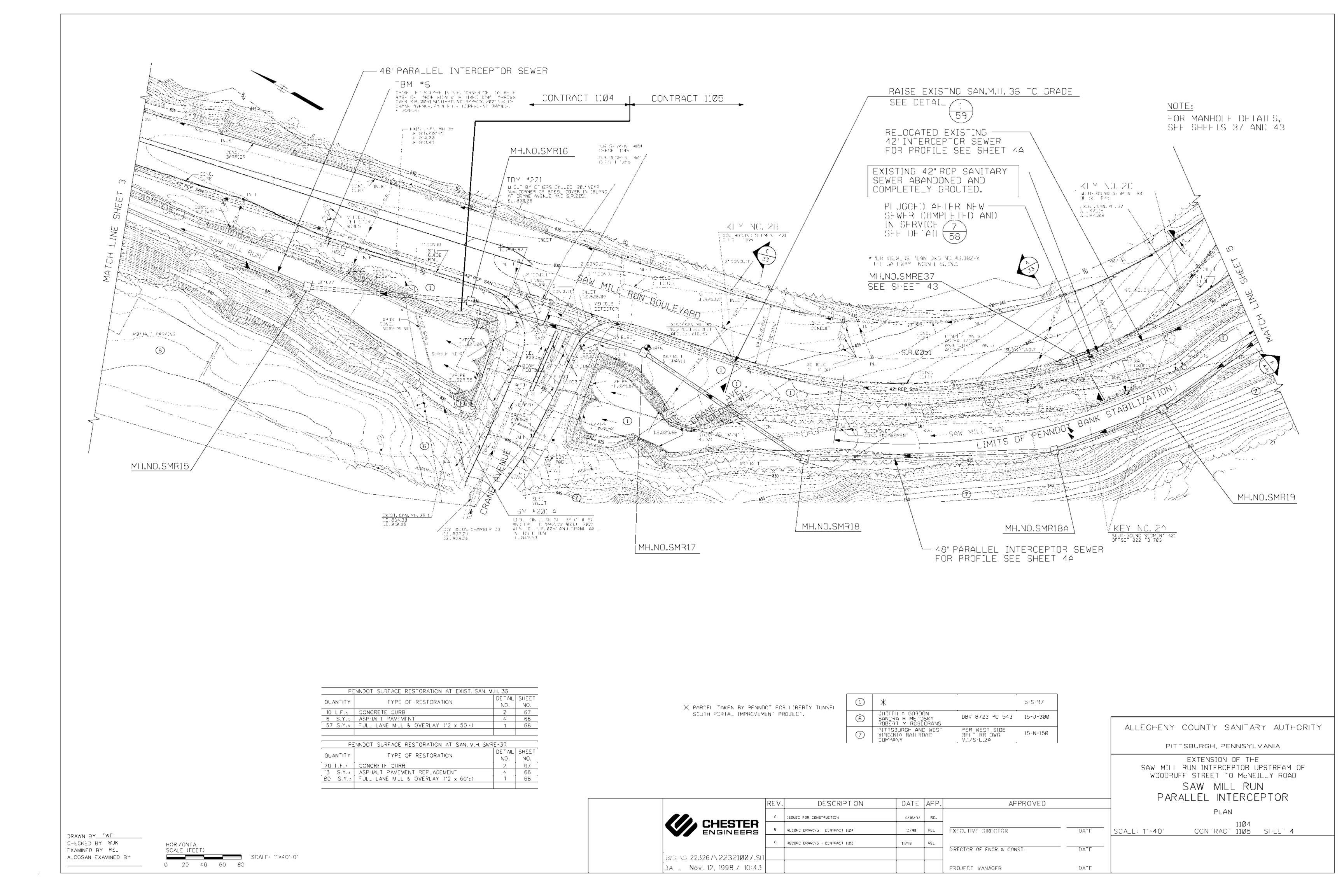
CONCEPTUAL BYPASS PUMPING PLAN FOR ISOLATING S-01A EAST CHAMBER

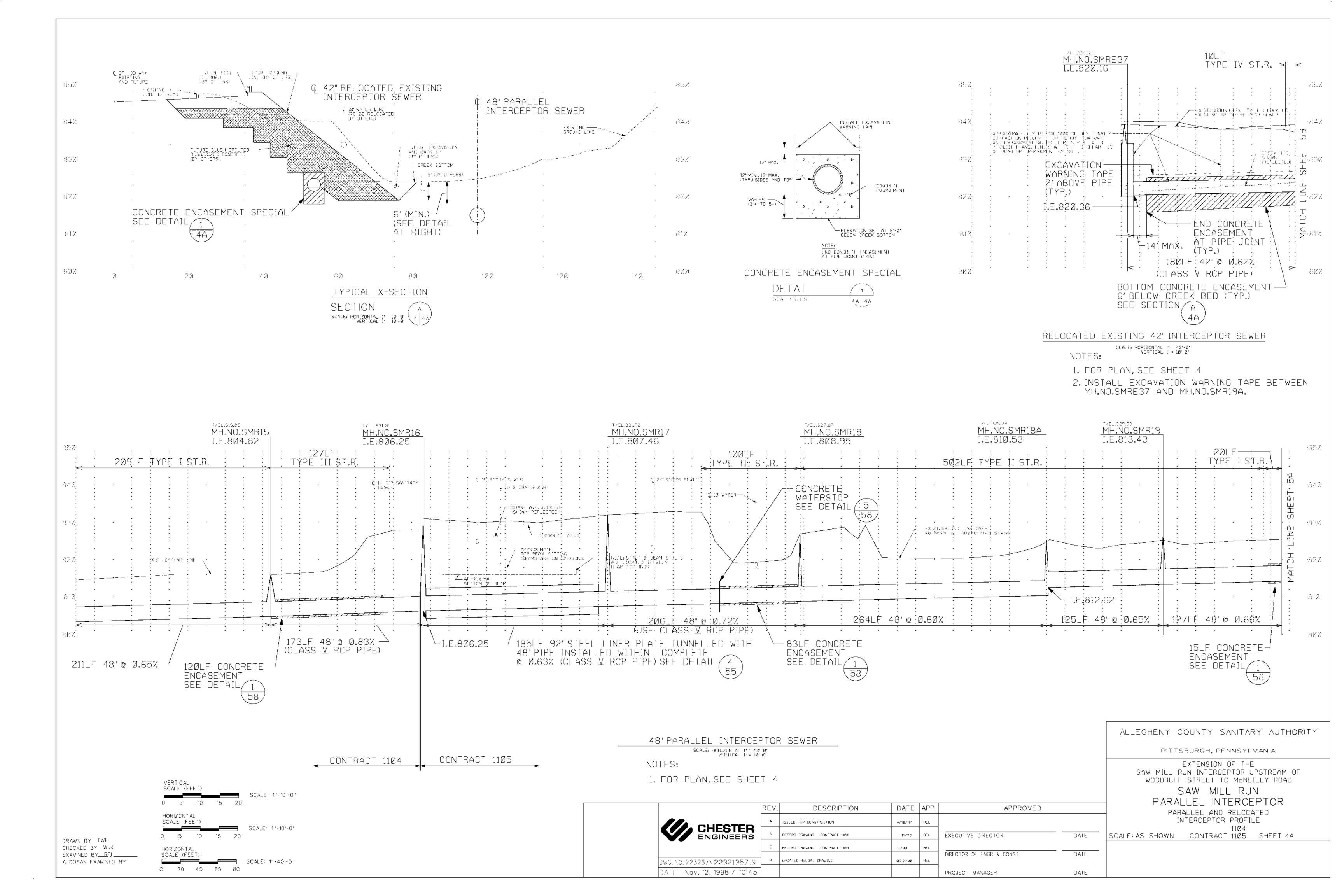


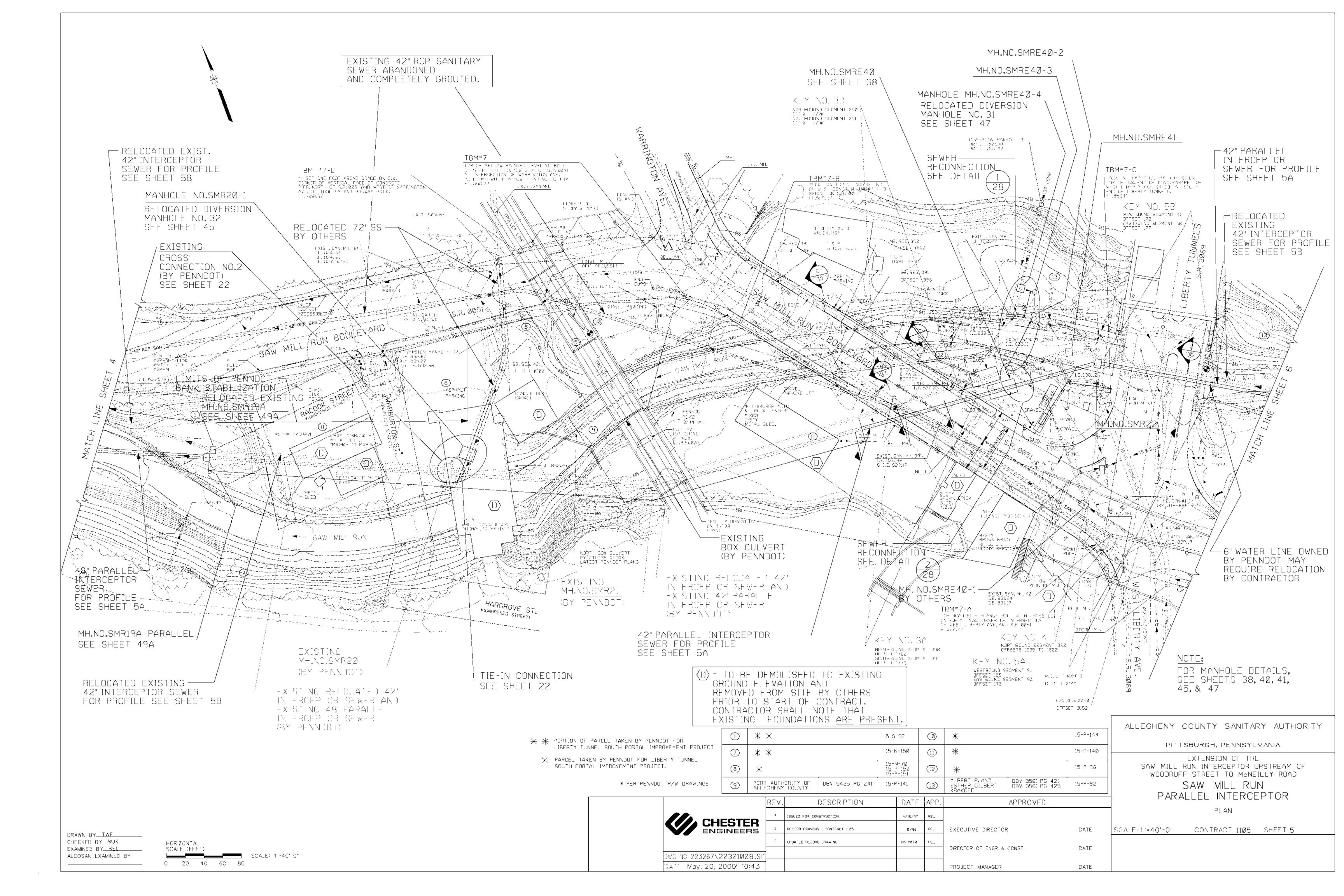

GENERAL NOTES

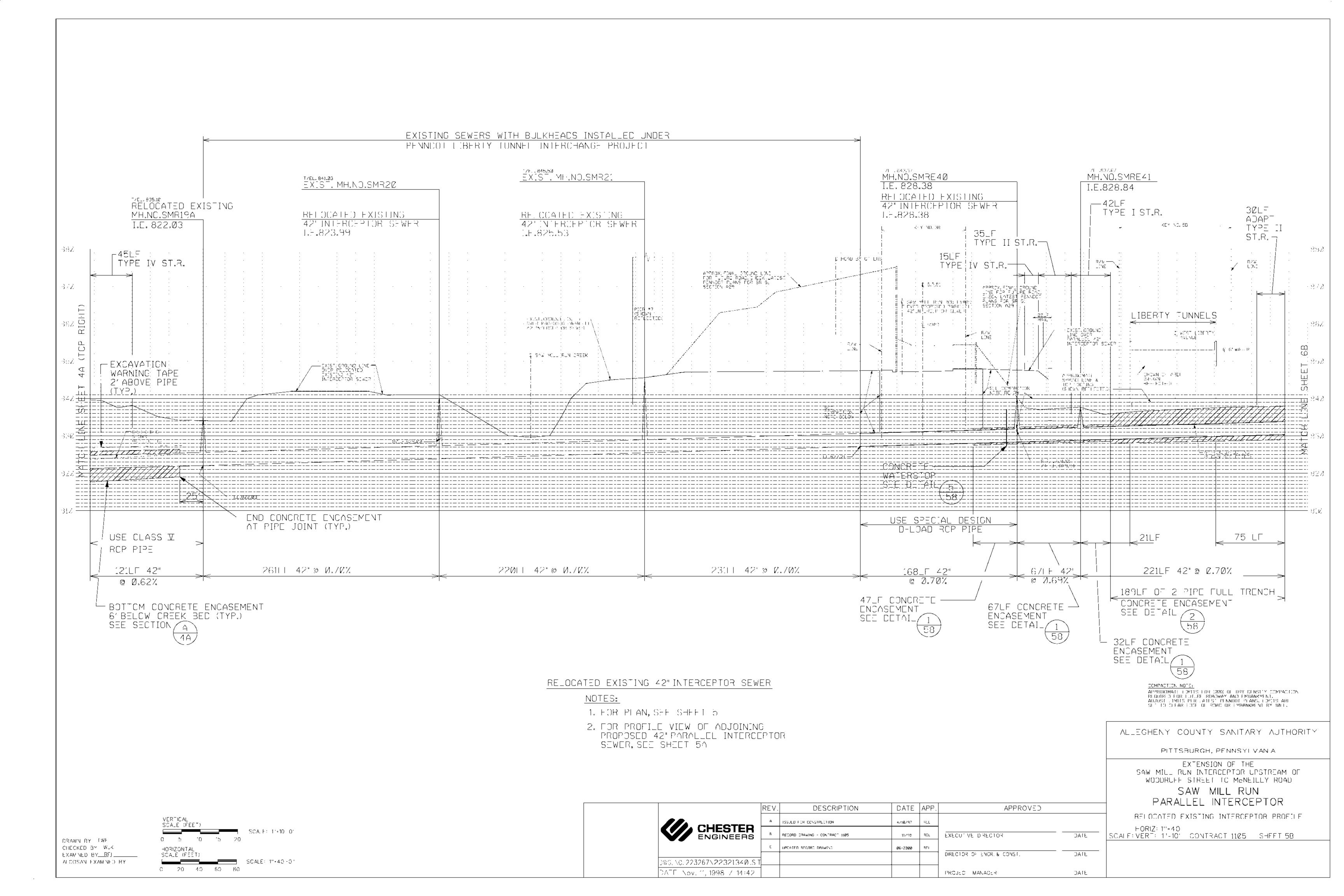

- 1. THE CONTRACTOR IS RESPONSIBLE FOR DESIGNING, PROVIDING, AND MAINTAINING TEMPORARY FACILITIES TO DEWATER THE AREA OF WORK AND PROVIDE PUMPS, BACKUP PUMPS, BULKHEADS, COFFERDAMS, MATERIALS AND EQUIPMENT AS NECESSARY TO PROVIDE FOR A DRY INSTALLATION.
- 2. CONTRACTOR IS RESPONSIBLE FOR MAINTAINING FORWARD FLOW THROUGH THE CONTRACT WORK ZONE AT ALL TIMES. MAINTENANCE OF FLOW AND/OR PA PE STAMPED BYPASS PLANS SHALL BE SUBMITTED BY THE CONTRACTOR AND APPROVED BY THE OWNER FOR ALL STRUCTURES PRIOR TO BEGINNING ANY CONTRACT CONSTRUCTION.
- 3. THE PARALLEL INTERCEPTOR HAS FLOW DIVERSION STRUCTURES AT SELECT LOCATIONS THAT CAN BE USED TO REDUCE THE AMOUNT OF FLOW THAT HAS TO BE BYPASS-PUMPED. HOWEVER, THESE FLOW DIVERSIONS MAY NOT PROVIDE TOTAL BYPASS OF FLOWS AND USE MAY BE RESTRICTED DUE TO WEATHER, FLOWS OR MAINTENANCE.
- 4. WHEN BYPASSING THE WEST CHAMBER, SOME INTERCEPTOR FLOWS CAN BE DIVERTED TO THE PARALLEL INTERCEPTOR BY OPERATING SMR20-NORTH SLUICE GATE TO THE CLOSED POSITION.
- 5. A BYPASS PLUG AND PUMP CAN BE SET AT MANHOLE MH27, UPSTREAM OF S-01A WEST CHAMBER, TO CATCH AND DIVERT ANY FLOWS LEAKING THROUGH THE SMR20-NORTH SLUICE GATE, INFLOW/INFILTRATION INTO THE INTERCEPTOR, AND ANY FLOWS FROM INTERCEPTOR LATERALS AT S-33 THROUGH S-37.
- 6. BYPASS PUMPING CAN ONLY OCCUR DURING DRY WEATHER CONDITIONS.
- 7. ANY REPRESENTATIVE FLOW DATA IS PROVIDED FOR INFORMATIONAL USE BY BIDDERS IN ESTIMATING BYPASS PUMPING NEEDS. IT IS THE RESPONSIBILITY OF BIDDERS TO EVALUATE THIS INFORMATION AGAINST ACTUAL FIELD CONDITIONS AND PERFORM ANY INVESTIGATIVE WORK NECESSARY TO SATISFY THE ITEMS SUBMITTED IN THEIR BIDS.


CONCEPTUAL BYPASS PUMPING PLAN FOR ISOLATING S-01A WEST CHAMBER









S-03A and SMR-MH-N22

S-03A (flow monitoring location along 48" Saw Mill Run interceptor)

Quarter	Average Daily Dry Weather Flow (mgd)	Average Daily Peak Dry Weather Flow (mgd)	Precipitation Volume (inches) *	Exended Periods of Missing/Errant Data
Q4-2023	6.73	7.18	6.80	None
Q1-2024	10.9	12.0	9.27	1/23/24-1/25/24
Q2-2024	-	-	13.3	Unreliable data the majority of the quarter
Q3-2024	10.8	11.6	9.47	None

SMR-MH-N22 (flow monitoring location along 42" Saw Mill Run interceptor)

Quarter	Average Daily Dry Weather Flow (mgd)	Average Daily Peak Dry Weather Flow (mgd)	Precipitation Volume (inches) *	Exended Periods of Missing/Errant Data
Q4-2023	3.84	4.49	6.80	10/16/23-10/19/23
Q1-2024	4.78	5.51	9.27	3/22/24-3/31/24
Q2-2024	-	-	13.3	Missing/unreliable data the majority of the quarter
Q3-2024	4.33	4.89	9.47	7/1/24-7/3/24, 9/1/24-9/30/24

^{*} Green Tree Rain Gauge

INFORMATION ONLY

SMRE-44

Year	Aver	age Daily Dry V	Veather Flow (mgd)	Average Daily Peak Dry Weather Flow (mgd)				Precipitation
Teal	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec	Volume (in)
2019	NA	5.64	4.41	5.60	NA	6.35	5.49	6.52	48.35
2018	5.94	6.68 *	NA	NA	6.77	7.76 *	NA	NA	56.91
2017	NA	7.29	5.02	5.01	NA	8.29	5.94	5.89	47.10

^{*} Includes April and May only

INFORMATION ONLY

SMR-48 (MH-06A) *

Year	Average Daily Dry Weather Flow (mgd)					e Daily Peak Dr	Precipitation		
Teal	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec	Volume (in)
2019	22.1	19.2	18.2	18.2	23.5	20.5	20.3	20.6	48.35
2018	14.6	8.91 *	6.19 *	20.3	16.8	9.82 *	7.07 *	21.2	56.91
2017	20.8	19.5	16.4	16.0	23.6	21.8	18.9	18.7	47.10
2016	14.4	17.2	15.5	15.5	16.5	19.8	17.8	18.3	36.70
2015	15.1	14.2	10.0	11.6	17.4	16.3	12.1	13.5	47.47

^{*} Flows at this monitoring location partly depend on upstream gate operations. This influence is evident in Q2-18 and Q3-18 but may have had an impact on other periods as well.

SMR-42 (MH N.22) *

Year	Average Daily Dry Weath	Veather Flow (mgd)	Averag	e Daily Peak Dr	y Weather Flov	v (mgd)	Precipitation	
real	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec	Volume (in)
2019	7.01	5.56	6.93	7.48	9.36	6.98	8.44	9.05	48.35
2018	10.1	14.4 *	13.1 *	8.55	11.4	16.5 *	15.1 *	11.1	56.91
2017	7.35	6.57	3.40	6.06	8.57	7.79	4.25	7.43	47.10
2016	8.25	7.11	5.83	5.43	9.73	8.40	7.02	6.65	36.70
2015	6.01	6.68	4.97	6.59	7.52	8.21	6.05	8.10	47.47

^{*} Flows at this monitoring location partly depend on upstream gate operations. This influence is evident in Q2-18 and Q3-18 but may have had an impact on other periods as well.

Saw Mill Run POCs from MH-44A to O-14W

Point of Connection	Monitoring Site Name	Site Location Description	Start Date	End Date	Average Daily Dry Weather Flow (mgd)	Average Daily Peak Dry Weather Flow (mgd)
S-46	S-46-00-M1	3275 South Main Street	7/1/2007	8/28/2008	0.352	0.451
MH-11	MH-11-M4	1019 McCartney Street	7/1/2007	8/27/2008	0.635	0.750
S-42A	S-42A-00-M1	420 Wabash Street	7/1/2007	7/31/2008	0.172	0.313
S-41	S-41-00-M1	1760 Wabash Street	7/1/2007	3/26/2009	0.335	0.369
MH-18	MH1800POC-L-01_	Penn DOT from I-279S	2/14/2008	2/1/2009	2.11	2.65
S-40	S-40-00	Intersection of Saw Mill Run Blvd. and Route 279	8/1/2007	1/29/2009	0.256	0.346
S-39	S-39-00	921 Saw Mill Run Blvd	11/1/2007	1/29/2009	0.245	0.354
S-36	S-36-00-M4	31 Penelope Street	7/1/2007	10/30/2008	0.139	0.187
S-35	S-35-00	1200 Saw Mill Run Blvd.	7/1/2007	7/31/2008	0.142	0.195
S-34	S-34-00	1200 Saw Mill Run Blvd.	7/1/2007	9/4/2008	0.052	0.074
S-32	S-32-00	632 West Warrington Avenue	9/1/2007	10/28/2008	1.15	1.33
S-31	S-31-00	632 West Warrington (at access road)	7/1/2007	7/30/2008	0.078	0.098
SMRE-40	SMRE40POC-L-01_	West Liberty Avenue	2/1/2008	2/1/2009	1.35	1.54

INFORMATION ONLY

G.4 APPX ASSET ACCESS CN-1818 REF INFORMATION (5 pages)

CN 1818 Structure Access

Note the Contractor is responsible for verifying all access conditions, and this information is being provided for reference only.

#	Type	Access Instructions
A-12	Bypass Valve	Structure A-12 is located at the intersection of the 10 th Street Bypass and Fort Duquesne Blvd. Coordination with PennDOT and the city of Pittsburgh will be required for all work at this location. Note that the townside chamber is on the 10 th Street Bypass road shoulder while the plantside chamber is behind the guard rail.
A-20	Bypass Valve	Structure A-20 is located along the Southeastern side of the Allegheny River, in between 29 ½ Street and the 31st Street Bridge. To reach the site, it is necessary utilize a vehicle road crossing over the B & O Railroad line (anticipated that there should be no specialty access coordination with the railroad required) and enter through gates by the Pittsburgh Public Works building at 29 Eazor Square. The structure manholes are located in a parking lot that contains multiple ambulances, public works trucks, and other vehicles. During field inspections, there were no issues with accessing and parking nearby the site, but coordination with Pittsburgh Public Works will be necessary for construction efforts to ensure ample space for trucks and equipment. The A-20 manholes are closer to the barbed wire fence at the back of the parking lot.
A-37	Flap Gate	Structure A-37 is located along the Southern side of the Allegheny River and just East of the 62nd Street Bridge, on Railroad Street. A vehicle crossing of the B & O railroad is required to reach the site (anticipated that there should be no specialty access coordination with the railroad required). There is a small pull off area that can fit two vehicles off the side of Railroad Street. A set of wooden stairs leads down the hill off the side of the road, with a wooden platform, followed by approximately 20 feet of an earthen path that leads to the structure itself. It may be necessary to access this site by boat for construction efforts, if equipment is too heavy or large to be transported down the stairs and placed next to the structure.
A-65	Flap Gate	Structure A-65 is located along the Northeastern side of the Allegheny River and across the river from the Northwestern side of Herrs Island. To access, vehicles should drive past the Three Rivers Rowing Club located at 90 River Front Drive, cross the Three Rivers Heritage Trail, and drive a short distance on a dirt pathway down to the structure. This does require going through locked gates. There is enough space for a few vehicles nearby the structure and on the dirt pathway leading to it.
M-01	Bypass Valve	Structure M-01 is located along the Northeastern side of the Monongahela River, accessible from within the Mon Wharf parking lot area and it is close to diversion structure M-02. Coordination with the Pittsburgh Parking Authority will be necessary for any construction efforts. There are tight spaces for vehicles to navigate through bridge/overpass columns and parking bollards located throughout the area. The structure itself is located at the edge of the parking area and adjacent to a ramp that leads down to the Three

		Rivers Heritage Trail (anticipated that there will need to be some
		coordination/notification with trail stakeholders both pre- and during
		construction). There is space nearby the structure for parking and equipment
		but there are columns and bollards which may prevent heavy machinery from
		accessing the structure by land.
M-02	Bypass	Structure M-02 is located along the Northeastern side of the Monongahela
	Valve	River, accessible from within the Mon Wharf parking lot area and it is close
		to diversion structure M-01. Coordination with the Pittsburgh Parking
		Authority/lot attendant will be necessary for any construction efforts. There
		are tight spaces for vehicles to navigate through bridge/overpass columns and
		parking bollards located throughout the area. The structure itself is located in
		an area blocked off by metal chains in between the parking spaces and the
		sidewalk. There is space nearby the structure for parking and equipment but
		there are columns and bollards which may prevent heavy machinery from
		accessing the structure by land.
M-10	Bypass	Structure M-10 is located on the Southern side of the Monongahela River
	Valve	and West of the 10th Street Bridge. It is accessible via the Three Rivers
		Heritage Trail. A vehicle crossing of an active CSX railroad is required to
		reach the site (anticipated that there should be no specialty access
		coordination with the railroad required). There is a locked gate at the Color
		Park (1 S 6th Street) that allows vehicle access to the trail when unlocked.
		Driving on the Three Rivers Heritage trail requires care and attention to the
		pedestrians and bikers utilizing the trail. There is also a locked gate at the
		entrance to the structure itself. Note that ALCOSAN has a key for the two
		locks required. Past the gate to the structure, there is a set of wooden stairs
		leading down to the manholes of the structure. M-10 is accessible by river if
		necessary for heavy construction equipment.
M-11	Bypass	Structure M-11 is located on the Southern side of the Monongahela River and
141 11	Valve	under the 10th Street Bridge. It is accessible via the Three Rivers Heritage
	Varve	Trail. A vehicle crossing of an active CSX railroad is required to reach the
		site (anticipated that there should be no specialty access coordination with
		the railroad required). There is a locked gate at the Color Park (1 S 6th
		Street) that allows vehicle access to the trail when unlocked. Driving on the
		Three Rivers Heritage trail requires care and attention to the pedestrians and
		bikers utilizing the trail. Structure M-11 is located off of the trail in a gravel
		area, immediately after crossing under the 10th Street Bridge. There is space
		in the gravel off of the trail for a few vehicles and some construction
		equipment. Unhoused persons encampment(s) are prevalent nearby.
M-12	Bypass	Structure M-12 is located on the Southern side of the Monongahela River
	Valve	and is accessible via the Three Rivers Heritage Trail. A vehicle crossing of an
		active CSX railroad is required to reach the site (anticipated that there should
		be no specialty access coordination with the railroad required). There is a
		locked gate at the Color Park (1 S 6th Street) that allows vehicle access to the
		trail when unlocked. Driving on the Three Rivers Heritage trail requires care
		and attention to the pedestrians and bikers utilizing the trail. The manholes at
		M-12 are located within the trail itself and so will require pedestrian
		111 12 are recailed writing the trail resert and so will require pedesuran

	I	
		control/protection when work is being done. Vehicles can park off to the side of the trail but cannot fully pull off the trail at this location. This structure initially did not have acceptable oxygen percentage levels and needed to be aired out prior to confined space entry requirements were met.
M-13	Bypass Valve	Structure M-13 is located on the Southern side of the Monongahela River and is accessible via the Three Rivers Heritage Trail. A vehicle crossing of an active CSX railroad is required to reach the site (anticipated that there should be no specialty access coordination with the railroad required). There is a locked gate at the Color Park (1 S 6th Street) that allows vehicle access to the trail when unlocked. Driving on the Three Rivers Heritage trail requires care and attention to the pedestrians and bikers utilizing the trail. M-13 is located off of the trail, down an approximately 100-foot long earthen path with a 5-10% graded slope. After rain events this slope path becomes slick and muddy making travel to the structure with equipment difficult. This site is also accessible by boat to bring construction equipment if necessary.
M-14	Bypass Valve	Structure M-14 is located on the Southern side of the Monongahela River and is accessible via the Three Rivers Heritage Trail. A vehicle crossing of an active CSX railroad is required to reach the site (anticipated that there should be no specialty access coordination with the railroad required). There is a locked gate at the Color Park (1 S 6th Street) that allows vehicle access to the trail when unlocked. Driving on the Three Rivers Heritage trail requires care and attention to the pedestrians and bikers utilizing the trail. M-14 is located off of the trail, along an approximately 20 foot long earthen path with a 5-10% graded slope. At one point in this earthen path there is a 3 foot sheer drop which will make equipment transport difficult. This site is also accessible by boat.
M-17	Bypass Valve	Structure M-17 is located on the Southern side of the Monongahela River and adjacent to South 18th Street. The site is accessible via the Southside River Front Park parking lot nearby which has ample space for vehicle parking. It does require crossing the Three Rivers Heritage Trail to access the wooden stairs leading down to the structure. M-17 is accessible by boat if necessary for heavy equipment.
M-20	Bypass Valve	Structure M-20 is located on the Southern side of the Monongahela River and adjacent to the Southside River Front Park, directly East of the Birmingham Bridge. The site is easily accessed via the parking lot for the Southside Riverfront Park. M-20 involved a double confined space entry configuration which complicates work in this structure. There is an upper structure with one manhole entrance built on top of the original structure that includes three manhole entries into lower plantside, riverside, and townside chambers. The manholes leading into the lower chambers were left open. Although the manhole entry into the top chamber is not directly over any of the three in the lower chamber manholes, it is important to be aware of this potential fall hazard.
M-23	Bypass Valve	Structure M-23 is located on the Southwestern side of the Monongahela River, just West of the South Side Marina (2611 S Water Street). The site is accessible by driving on the Three Rivers Heritage Trail approximately 1,000

		feet from the Eastern side of the South Side Riverfront Park parking lot.
		There is a gravel pull off adjacent to the structure for vehicle parking and
		ample space for any necessary equipment.
M-34	Flap	Structure M-34 is located on the Eastern side of the Monongahela River,
	Gate	nearby Becks Run Pumping Station (at the intersection of Becks Run Road
		and E Carson Street). The site is accessible via driving along the Three
		Rivers Heritage Trail. There is a 50 foot long wooden staircase that leads
		down to structure M-34. Driving on the Three Rivers Heritage trail requires
		care and attention to the pedestrians and bikers utilizing the trail. There is a
		vehicle pull-off near this structure from the trail. Construction equipment
		may be able to access the M-34 structure from this area but this was not field
		verified due to dense vegetation between the pull-off and structure. This site
		is accessible by boat to bring construction equipment if necessary.
O-36	Bypass	Structure O-36 is located at the corner of Oxline Street and Liverpool Street,
	Valve	along the Eastern side of the Ohio River. Due to the manholes being set in
		the roadway, this site is accessible by vehicle and there is space for parking
		and equipment off to the side of the road. When work is being done, traffic
		controls will be needed as the manholes are in the center of the street.
O-43	Bypass	Structure O-43 is located on the North side of the Ohio River and is set in the
	Valve	Carnegie Science Center parking lot (1 Allegheny Avenue). This site is
		accessible by vehicle via the parking lot, but a chain is present that blocks
		access for larger vehicles. Standard sized work trucks and other vehicles are
		able to enter through the parking lot gate. The manholes for the structure are
** 4 00	10014	set in the pavement of the lot.

^{**}A-80 and S-01A Sluice Gates are on CN 1818 but not included in this reference.